JSPLib
The jobshop scheduling problem benchmark library
The JSPLib is an informal group of instances (ft, la, abz, orb, swv, yn, ta, dmu to which we added tai, long and short) that have been used to investigate solution methods for the jobshop problem. On this page we keep track of the best known solutions (BKS) and classify the instances based on difficulty.
The data and source code can be found in the Github repository This document is visible as a README.md in the Github folder jobshop or as a webpage
Table of Contents
- Jobshop instances
- Jobshop and variants using the standard format
- Jobshop variants that require extra data
- Jobshop benchmark - JSPLib
- Test instances for algorithms
Overview of the jobshop benchmark library
All instances in the benchmark follow the standard jobshop format. The DaColTeppan instances use a conservative extension of the existing jobshop format.
Jobshop instances (332)
- 3 instances
ftfrom Fischer and Thompson 1963 - 40 instances
lafrom Lawrence 1984 - 5 instances
abzfrom Adams, Balas and Zawack 1988 - 10 instances
orbfrom Applegate and Cook 1991 - 20 instances
swvfrom Storer, Wu and Vaccari 1992 - 4 instances
ynfrom Yamada and Nakano 1992 - 80 instances
tafrom Taillard 1993 - 80 instances
dmufrom Demirkol, Mehta and Uzsoy 1998 - 90 instances
taifrom Da Col and Teppan 2022
Reentrant jobshop instances (24)
- 12 instances
longfrom Da Col and Teppan 2022 - 12 instances
shortfrom Da Col and Teppan 2022
Classification of the jobshop instances
We use the following engines as references for the benchmark
- IBM ILOG CP Optimizer : representative of the CP-scheduling family of engines
- Google CP-SAT : representative of the lazy clause generation family of engines
- OptalCP : representative of the lazy clause generation family of engines
We have dropped Cplex from the jobshop tests due to poor performance of linear solvers as reported by multiple authors in the literature and confirmed by ourselves.
Instances are divided into
- easy : solved to optimality (with proof) in 1 minute by at least 1 reference engine
- medium : solved to optimality (with proof) in 1 hour by at least 1 reference engine
- hard : solved to optimality (with proof) in > 1h by at least 1 reference engine
- closed : allegedly solved to optimality. Most of the time the optimal solution is known because 2 different methods independently found equal upper and lower bounds. The problem moves to
hardonly when the optimality proof can be reproduced by a reference engine. - open : no proof of optimality
Currently the instances divide as follows
ft: 3 easyla: 39 easy, 1 mediumabz: 2 easy, 2 medium, 1 hardorb: 10 easyswv: 7 easy, 4 medium, 6 hard, 3 openyn: 4 hardta: 40 easy, 21 medium, 7 hard, 12 opendmu: 17 easy, 13 medium, 5 hard, 45 opentai: 50 easy, 40 openlong: 11 easy, 1 mediumshort: 5 easy, 6 medium, 1 open
Previous versions of these results had some closed instances which we proceed to solve with OptalCP running for longer times to confirm their status of solved
Formats
There are three main formats, the standard, the DaColTeppan and the taillard
Standard format
#n #m
((machine duration ){m}\n){n}
Image from Da Col & Teppan
For instance l01 on standard format is
10 5
1 21 0 53 4 95 3 55 2 34
0 21 3 52 4 16 2 26 1 71
3 39 4 98 1 42 2 31 0 12
1 77 0 55 4 79 2 66 3 77
0 83 3 34 2 64 1 19 4 37
1 54 2 43 4 79 0 92 3 62
3 69 4 77 1 87 2 87 0 93
2 38 0 60 1 41 3 24 4 83
3 17 1 49 4 25 0 44 2 98
4 77 3 79 2 43 1 75 0 96
Da Col Teppan format
#n #m
((machine duration )+ -1 -1\n){n}
Image from Da Col & Teppan
In the DaColTeppan format
- there can be any number of tasks per job
- there can be various tasks in a job running on the same machine (reentrance)
- the jobs end in a -1 -1
The DaColTeppan format is actually a format for the reentrant jobshop problem which is a generalization of the jobshop, common in some industrial environments like semiconductors
For instance
10 5
1 21 0 53 -1 -1
0 21 3 52 4 16 2 26 1 71 4 95 3 55 2 34 -1 -1
3 39 4 98 1 42 2 31 0 12 79 2 66 3 77 -1 -1
1 77 0 55 4 -1 -1
0 83 -1 -1
1 54 2 43 4 79 0 92 3 62 3 34 2 64 1 19 4 37 -1 -1
3 69 4 77 1 87 2 87 0 93 41 3 24 4 83 -1 -1
2 38 0 60 1 -1 -1
3 17 1 49 4 25 0 44 2 98 -1 -1
4 77 3 79 2 43 1 75 0 96 -1 -1
To be totally conservative, the format should remove the last two -1 -1 and consider the end of line is the separator between jobs. It is not hard to do a parser that accepts both.
Taillard format
The taillard format first lists the machines, then the durations
#n #m
((machine ){m}\n){n}
((duration ){m}\n){n}
For instance l01 in taillard format is
10 5
1 0 4 3 2
0 3 4 2 1
3 4 1 2 0
1 0 4 2 3
0 3 2 1 4
1 2 4 0 3
3 4 1 2 0
2 0 1 3 4
3 1 4 0 2
4 3 2 1 0
21 53 95 55 34
21 52 16 26 71
39 98 42 31 12
77 55 79 66 77
83 34 64 19 37
54 43 79 92 62
69 77 87 87 93
38 60 41 24 83
17 49 25 44 98
77 79 43 75 96
Publications (instances)
The instances come from the following publications
-
H. Fisher, G.L. Thompson (1963), Probabilistic learning combinations of local job-shop scheduling rules, J.F. Muth, G.L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, 225-251.
-
Lawrence, S. (1984). Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration, Carnegie-Mellon University.
-
Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management science, 34(3), 391-401.
-
Applagate, D., & Cook, W. (1991). A computational study of the job-shop scheduling instance. ORSA J. Comput, 3, 49-51.
-
Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing instances with application to job shop 38 (1992) 1495–1509 Manage. Sci, 38, 1495-1509.
-
T. Yamada, R. Nakano (1992), A genetic algorithm applicable to large-scale job-shop instances, R. Manner, B. Manderick (eds.),Parallel instance solving from nature 2, North-Holland, Amsterdam, 281-290
-
Taillard, E. (1993). Benchmarks for basic scheduling problems. european journal of operational research, 64(2), 278-285.
-
Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137-141.
-
Da Col, G., & Teppan, E. C. (2022). Industrial-size job shop scheduling with constraint programming. Operations Research Perspectives, 9, 100249.
Jobshop variants
Many variants of the jobshop problem can be solved with the same data or simple addition of parameters
Jobshop
The classical jobshop problem has 2 constraints
- intrajob precedences
- no overlap per machine
For commodity the later constraint can be written
\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{start}_j^m + \mathrm{Duration}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]No buffer jobshop (blocking jobshop)
In the classic jobshop there is implicitly a buffer area in front of each machine where tasks can wait to be processed. In the non-buffer jobshop, also called blocking jobshop this area doesn’t exist, as a result a job (j,r)processed on machine m blocks this machine until (j,r+1) starts being processed on the next machine.
From this problem we introduce a new variable $\mathrm{end}_j^m$
- the tasks are variable length with a minimum length of $\mathrm{Duration}_j^m$
- for each job, the task of rank $r+1$ starts as soon as the task of rank $r$ ends
- no overlap per machine
or
\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{end}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]The extra variables $\mathrm{end}$ can be pre-processed out of the equations
No-wait jobshop
In the no-wait jobshop variant, once the processing of a job has started, it has to go through all machines without interruption.
The equations are reminiscent of the blocking jobshop but without the variable length activities
- for each job, the task of rank $r+1$ starts as soon as the task of rank $r$ ends
- no overlap per machine
or
\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{end}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]Cumulative jobshop
In the cumulative jobshop, the capacity of the capacity of the machines is not unitary anymore. In other words there is a limit $C_m$ on the number of tasks that can be simultaneously processed by machine $m$
The constraints of the problem are
- intrajob precedences
- capacity per machine
It is advisable to avoid having an unlimited number of equations, in this case because of the explicit dependency on time, even if it just for notation. We therefore introduce the functional notation for cumulative constraints
\[\forall m \in \mathrm{machines}\quad \mathrm{cumul}_m(t) = \sum_j \mathrm{step}(\mathrm{start}_j^m) - \mathrm{step}(\mathrm{start}_j^m + \mathrm{Duration}_j^m)\]Here $\mathrm{step}(t)$ is the function that has value 1 at time $t$ and 0 otherwise, as a result $\mathrm{cumul}$ is a function of time. Each configuration of $\mathrm{start}_j^m$ values defines a different cumulative function.
The constraints of the problem become
- intrajob precedences
- capacity per machine
Jobshop with operators - workers
In the jobshop with operators, workers have to be assigned to the machines while the tasks are being performed.
- when the operator assignment can be interrupted (preemptive operators) the problem becomes a jobshop with maximum number of simultaneous jobs.
- when the operator assignment cannot be interrupted (non-preemptive operators) the operators need to be assigned to jobs individually and they cannot be assigned to simultaneous jobs
Jobshop with preemptive operators
The constraints of the problem become
- intrajob precedences
- no overlap per machine
- maximum number of simultaneous tasks
Other jobshop variants
Because these jobshop variants require extra data, we cannot run them over the standard benchmark
Jobshop with arbitrary precedences
Instead of having precedences only within the tasks of a job, there is a more general precedence graph

Jobshop with sequence dependent setup times
There are setup times in the machines to switch from one job to another
Notice that this variant is only interesting if the setup times are sequence-dependent. Otherwise it is equivalent to increase each task by the length of the setup time and to solve an usual jobshop
Flexible jobshop
The tasks of a job can be processed by any machine in a predefined group of similar machines.
Please refer to the flexible-jobshop section of this benchmark for more information
Jobshop benchmark - JSPLib
The JSPLib is an informal group of instances (ft, la, abz, orb, swv, yn, ta, dmu to which we added tai, short and long) that have been used to investigate solution methods for the jobshop problem. On this page we keep track of the best known solutions (BKS) and classify the instances based on difficulty.
An instance is considered
easyif it is solved to optimality by a reference engine in < 1 minutemediumif it is solved to optimality by a reference engine in < 1hhardif it is solved to optimality by a reference engine in > 1hclosedif the combination of upper and lower bounds found in the literature allows concluding the value of the optimal solution is knownopenotherwise
For each instance we indicate the publication or engine that reaches that bound (lower or upper). When reporting the results:
- we give priority to engines over publications because of reproductibility of the results
- we give priority to the fastest engine to attain the bound
- when an engine attains a bound previously reported in the literature, we attribute the bound to the engine and remove the correponding paper from the list of relevant references
Other databases keep instead the first publication or method to have achieved that bound for historical reference. This work instead is meant for engine and algorithm developers to have means of reproducing the claimed results for comparison.
Similar work
Our work was inspired by the outstanding work of Naderi, Ruiz and Roshanaei Mixed-Integer Programming versus Constraint Programming for shop scheduling problems : New Results and Outlook [NRR2022] which compares CPO, Cplex, Gurobi and OR-tools on a benchmark of 6623 instances over 17 benchmarks with a timeout of 1h. They have made all the raw results available
We borrowed references for existing best known bounds from
- http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
- https://github.com/thomasWeise/jsspInstancesAndResults
- http://jobshop.jjvh.nl/
- https://optimizizer.com/jobshop.php
The upper bounds available in optimizizer are verified before publication (which we don’t do directly - our verification is the fact that an engine achieves the same value). We encourage you to also visit his site.
We also think https://www.jobshoppuzzle.com/ is a very cool site with interactive visualizations of jobshop heuristics and solutions.
Best known solutions - JSPLib
If you visualize the markdown in Visual Studio Code you will have colors !
Fisher and Thompson (1963)
FT instances are also known as MT because the 1963 paper of Fisher and Thompson was published in the book “Industrial scheduling” by Muth and Thompson.
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| ft06 | 6 x 6 | jobshop | 55 | 55 | easy | CPO in < 1 min |
| ft10 | 10 x 10 | jobshop | 930 | 930 | easy | CPO in < 1 min |
| ft20 | 20 x 5 | jobshop | 1165 | 1165 | easy | CPO in < 1 min |
Lawrence (1984)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| la01 | 10 x 5 | jobshop | 666 | 666 | easy | CPO in < 1 min |
| la02 | 10 x 5 | jobshop | 655 | 655 | easy | CPO in < 1 min |
| la03 | 10 x 5 | jobshop | 597 | 597 | easy | CPO in < 1 min |
| la04 | 10 x 5 | jobshop | 590 | 590 | easy | CPO in < 1 min |
| la05 | 10 x 5 | jobshop | 593 | 593 | easy | CPO in < 1 min |
| la06 | 15 x 5 | jobshop | 926 | 926 | easy | CPO in < 1 min |
| la07 | 15 x 5 | jobshop | 890 | 890 | easy | CPO in < 1 min |
| la08 | 15 x 5 | jobshop | 863 | 863 | easy | CPO in < 1 min |
| la09 | 15 x 5 | jobshop | 951 | 951 | easy | CPO in < 1 min |
| la10 | 15 x 5 | jobshop | 958 | 958 | easy | CPO in < 1 min |
| la11 | 20 x 5 | jobshop | 1222 | 1222 | easy | CPO in < 1 min |
| la12 | 20 x 5 | jobshop | 1039 | 1039 | easy | CPO in < 1 min |
| la13 | 20 x 5 | jobshop | 1150 | 1150 | easy | CPO in < 1 min |
| la14 | 20 x 5 | jobshop | 1292 | 1292 | easy | CPO in < 1 min |
| la15 | 20 x 5 | jobshop | 1207 | 1207 | easy | CPO in < 1 min |
| la16 | 10 x 10 | jobshop | 945 | 945 | easy | CPO in < 1 min |
| la17 | 10 x 10 | jobshop | 784 | 784 | easy | CPO in < 1 min |
| la18 | 10 x 10 | jobshop | 848 | 848 | easy | CPO in < 1 min |
| la19 | 10 x 10 | jobshop | 842 | 842 | easy | CPO in < 1 min |
| la20 | 10 x 10 | jobshop | 902 | 902 | easy | CPO in < 1 min |
| la21 | 15 x 10 | jobshop | 1046 | 1046 | easy | OptalCP in < 1 min |
| la22 | 15 x 10 | jobshop | 927 | 927 | easy | CPO in < 1 min |
| la23 | 15 x 10 | jobshop | 1032 | 1032 | easy | CPO in < 1 min |
| la24 | 15 x 10 | jobshop | 935 | 935 | easy | CPO in < 1 min |
| la25 | 15 x 10 | jobshop | 977 | 977 | easy | CPO in < 1 min |
| la26 | 20 x 10 | jobshop | 1218 | 1218 | easy | CPO in < 1 min |
| la27 | 20 x 10 | jobshop | 1235 | 1235 | easy | OptalCP in < 1 min |
| la28 | 20 x 10 | jobshop | 1216 | 1216 | easy | CPO in < 1 min |
| la29 | 20 x 10 | jobshop | 1152 | 1152 | medium | OptalCP in 5 min |
| la30 | 20 x 10 | jobshop | 1355 | 1355 | easy | CPO in < 1 min |
| la31 | 30 x 10 | jobshop | 1784 | 1784 | easy | CPO in < 1 min |
| la32 | 30 x 10 | jobshop | 1850 | 1850 | easy | CPO in < 1 min |
| la33 | 30 x 10 | jobshop | 1719 | 1719 | easy | CPO in < 1 min |
| la34 | 30 x 10 | jobshop | 1721 | 1721 | easy | CPO in < 1 min |
| la35 | 30 x 10 | jobshop | 1888 | 1888 | easy | CPO in < 1 min |
| la36 | 15 x 15 | jobshop | 1268 | 1268 | easy | CPO in < 1 min |
| la37 | 15 x 15 | jobshop | 1397 | 1397 | easy | CPO in < 1 min |
| la38 | 15 x 15 | jobshop | 1196 | 1196 | easy | OptalCP in < 1 min |
| la39 | 15 x 15 | jobshop | 1233 | 1233 | easy | CPO in < 1 min |
| la40 | 15 x 15 | jobshop | 1222 | 1222 | easy | OptalCP in < 1 min |
Adams, Balas and Zawack (1988)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| abz5 | 10 x 10 | jobshop | 1234 | 1234 | easy | CPO in < 1 min |
| abz6 | 10 x 10 | jobshop | 943 | 943 | easy | CPO in < 1 min |
| abz7 | 20 x 15 | jobshop | 656 | 656 | medium | OptalCP in < 1h |
| abz8 | 20 x 15 | jobshop | 667 | 667 | hard | OptalCP in 10h |
| abz9 | 20 x 15 | jobshop | 678 | 678 | medium | OptalCP in < 1h |
Various places report that “Henning A (2002). Praktische Job-Shop Scheduling-Probleme. Ph.D. thesis, Friedrich-Schiller-Universität Jena, Jena, Germany” as having found a solution of 665 for abz8, but the original document says their solution is 667 and 665 is a “solution from the literature”. We believe it is just a typing mistake in the sources they used. In any case OptalCP proves a lower bound of 667.
Applegate and Cook (1991)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| orb01 | 10 x 10 | jobshop | 1059 | 1059 | easy | CPO in < 1 min |
| orb02 | 10 x 10 | jobshop | 888 | 888 | easy | CPO in < 1 min |
| orb03 | 10 x 10 | jobshop | 1005 | 1005 | easy | CPO in < 1 min |
| orb04 | 10 x 10 | jobshop | 1005 | 1005 | easy | CPO in < 1 min |
| orb05 | 10 x 10 | jobshop | 887 | 887 | easy | CPO in < 1 min |
| orb06 | 10 x 10 | jobshop | 1010 | 1010 | easy | CPO in < 1 min |
| orb07 | 10 x 10 | jobshop | 397 | 397 | easy | CPO in < 1 min |
| orb08 | 10 x 10 | jobshop | 899 | 899 | easy | CPO in < 1 min |
| orb09 | 10 x 10 | jobshop | 934 | 934 | easy | CPO in < 1 min |
| orb10 | 10 x 10 | jobshop | 944 | 944 | easy | CPO in < 1 min |
Storer, Wu and Vaccari (1992)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| swv01 | 20 x 10 | jobshop | 1407 | 1407 | easy | OptalCP in < 1 min |
| swv02 | 20 x 10 | jobshop | 1475 | 1475 | easy | OptalCP in < 1 min |
| swv03 | 20 x 10 | jobshop | 1398 | 1398 | medium | CPO in < 1h |
| swv04 | 20 x 10 | jobshop | 1464 | 1464 | medium | OptalCP in < 1h |
| swv05 | 20 x 10 | jobshop | 1424 | 1424 | medium | OptalCP in < 1h |
| swv06 | 20 x 15 | jobshop | 1667 | 1667 | hard | OptalCP in 40h |
| swv07 | 20 x 15 | jobshop | 1541 | 1594 | open | lb OptalCP / ub GR2014 |
| swv08 | 20 x 15 | jobshop | 1694 | 1751 | open | lb OptalCP / ub Mu2015 |
| swv09 | 20 x 15 | jobshop | 1655 | 1655 | hard | OptalCP in 15h |
| swv10 | 20 x 15 | jobshop | 1692 | 1743 | open | lb OptalCP / ub SS2018 |
| swv11 | 50 x 10 | jobshop | 2983 | 2983 | medium | OptalCP in < 1h |
| swv12 | 50 x 10 | jobshop | 2972 | 2972 | medium | OptalCP in < 1h |
| swv13 | 50 x 10 | jobshop | 3104 | 3104 | medium | OptalCP in < 1h |
| swv14 | 50 x 10 | jobshop | 2968 | 2968 | medium | CPO in < 1h |
| swv15 | 50 x 10 | jobshop | 2885 | 2885 | hard | OptalCP in 9h |
| swv16 | 50 x 10 | jobshop | 2924 | 2924 | easy | CPO in < 1 min |
| swv17 | 50 x 10 | jobshop | 2794 | 2794 | easy | CPO in < 1 min |
| swv18 | 50 x 10 | jobshop | 2852 | 2852 | easy | CPO in < 1 min |
| swv19 | 50 x 10 | jobshop | 2843 | 2843 | easy | CPO in < 1 min |
| swv20 | 50 x 10 | jobshop | 2823 | 2823 | easy | CPO in < 1 min |
Yamada Nakano (1992)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| yn1 | 20 x 20 | jobshop | 884 | 884 | hard | OptalCP in 6h |
| yn2 | 20 x 20 | jobshop | 904 | 904 | hard | OptalCP in 40h |
| yn3 | 20 x 20 | jobshop | 892 | 892 | hard | OptalCP in 40h |
| yn4 | 20 x 20 | jobshop | 967 | 967 | hard | OptalCP in 16h |
Taillard (1993)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| ta01js | 15 x 15 | jobshop | 1231 | 1231 | easy | CPO in < 1 min |
| ta02js | 15 x 15 | jobshop | 1244 | 1244 | easy | OptalCP in < 1 min |
| ta03js | 15 x 15 | jobshop | 1218 | 1218 | easy | OptalCP in < 1 min |
| ta04js | 15 x 15 | jobshop | 1175 | 1175 | easy | OptalCP in < 1 min |
| ta05js | 15 x 15 | jobshop | 1224 | 1224 | easy | OptalCP in < 1 min |
| ta06js | 15 x 15 | jobshop | 1238 | 1238 | easy | OptalCP in < 1 min |
| ta07js | 15 x 15 | jobshop | 1227 | 1227 | easy | OptalCP in < 1 min |
| ta08js | 15 x 15 | jobshop | 1217 | 1217 | easy | OptalCP in < 1 min |
| ta09js | 15 x 15 | jobshop | 1274 | 1274 | easy | OptalCP in < 1 min |
| ta10js | 15 x 15 | jobshop | 1241 | 1241 | easy | OptalCP in < 1 min |
| ta11js | 20 x 15 | jobshop | 1357 | 1357 | medium | OptalCP in < 1h |
| ta12js | 20 x 15 | jobshop | 1367 | 1367 | medium | OptalCP in < 1h |
| ta13js | 20 x 15 | jobshop | 1342 | 1342 | medium | OptalCP in < 1h |
| ta14js | 20 x 15 | jobshop | 1345 | 1345 | easy | CPO in < 1 min |
| ta15js | 20 x 15 | jobshop | 1339 | 1339 | medium | OptalCP in < 1h |
| ta16js | 20 x 15 | jobshop | 1360 | 1360 | medium | OptalCP in < 1h |
| ta17js | 20 x 15 | jobshop | 1462 | 1462 | easy | OptalCP in < 1 min |
| ta18js | 20 x 15 | jobshop | 1396 | 1396 | medium | OptalCP in < 1h |
| ta19js | 20 x 15 | jobshop | 1332 | 1332 | medium | OptalCP in < 1h |
| ta20js | 20 x 15 | jobshop | 1348 | 1348 | medium | OptalCP in < 1h |
| ta21js | 20 x 20 | jobshop | 1642 | 1642 | medium | OptalCP < 1h |
| ta22js | 20 x 20 | jobshop | 1600 | 1600 | hard | OptalCP in 2h |
| ta23js | 20 x 20 | jobshop | 1557 | 1557 | hard | OptalCP in 2h |
| ta24js | 20 x 20 | jobshop | 1644 | 1644 | medium | OptalCP in < 1h |
| ta25js | 20 x 20 | jobshop | 1595 | 1595 | medium | OptalCP in < 1h |
| ta26js | 20 x 20 | jobshop | 1643 | 1643 | medium | OptalCP in 7h |
| ta27js | 20 x 20 | jobshop | 1680 | 1680 | medium | OptalCP in < 1h |
| ta28js | 20 x 20 | jobshop | 1603 | 1603 | medium | OptalCP in < 1h |
| ta29js | 20 x 20 | jobshop | 1625 | 1625 | hard | OptalCP in 2h |
| ta30js | 20 x 20 | jobshop | 1562 | 1584 | open | lb OptalCP / ub NS2002 |
| ta31js | 30 x 15 | jobshop | 1764 | 1764 | medium | CPO in < 1h |
| ta32js | 30 x 15 | jobshop | 1774 | 1784 | open | lb CPO2015 / ub PSV2010 |
| ta33js | 30 x 15 | jobshop | 1791 | 1791 | hard | OptalCP in 10h |
| ta34js | 30 x 15 | jobshop | 1828 | 1828 | medium | OptalCP in < 1h |
| ta35js | 30 x 15 | jobshop | 2007 | 2007 | easy | OptalCP in < 1 min |
| ta36js | 30 x 15 | jobshop | 1819 | 1819 | medium | OptalCP in < 1h |
| ta37js | 30 x 15 | jobshop | 1771 | 1771 | hard | OptalCP in 2h |
| ta38js | 30 x 15 | jobshop | 1673 | 1673 | hard | OptalCP in 7h |
| ta39js | 30 x 15 | jobshop | 1795 | 1795 | easy | OptalCP in < 1 min |
| ta40js | 30 x 15 | jobshop | 1658 | 1669 | open | lb OptalCP / ub GR2014 |
| ta41js | 30 x 20 | jobshop | 1926 | 2005 | open | lb OptalCP / ub CPO2015 |
| ta42js | 30 x 20 | jobshop | 1900 | 1937 | open | lb OptalCP / ub GR2014 |
| ta43js | 30 x 20 | jobshop | 1809 | 1846 | open | lb CPO2015 / ub PLC2015 |
| ta44js | 30 x 20 | jobshop | 1961 | 1979 | open | lb OptalCP / ub CS2022 |
| ta45js | 30 x 20 | jobshop | 1997 | 1997 | medium | OptalCP in < 1h |
| ta46js | 30 x 20 | jobshop | 1976 | 2004 | open | lb OptalCP / ub GR2014 |
| ta47js | 30 x 20 | jobshop | 1827 | 1889 | open | lb OptalCP / ub PLC2015 |
| ta48js | 30 x 20 | jobshop | 1921 | 1937 | open | lb OptalCP / ub SS2018 |
| ta49js | 30 x 20 | jobshop | 1938 | 1960 | open | lb OptalCP / ub LHW2024 |
| ta50js | 30 x 20 | jobshop | 1848 | 1923 | open | lb OptalCP / ub PLC2015 |
| ta51js | 50 x 15 | jobshop | 2760 | 2760 | easy | CPO in < 1 min |
| ta52js | 50 x 15 | jobshop | 2756 | 2756 | easy | OptalCP in < 1 min |
| ta53js | 50 x 15 | jobshop | 2717 | 2717 | easy | OptalCP in < 1 min |
| ta54js | 50 x 15 | jobshop | 2839 | 2839 | easy | CPO in < 1 min |
| ta55js | 50 x 15 | jobshop | 2679 | 2679 | easy | OptalCP in < 1 min |
| ta56js | 50 x 15 | jobshop | 2781 | 2781 | easy | OptalCP in < 1 min |
| ta57js | 50 x 15 | jobshop | 2943 | 2943 | easy | CPO in < 1 min |
| ta58js | 50 x 15 | jobshop | 2885 | 2885 | easy | CPO in < 1 min |
| ta59js | 50 x 15 | jobshop | 2655 | 2655 | easy | OptalCP in < 1 min |
| ta60js | 50 x 15 | jobshop | 2723 | 2723 | easy | OptalCP in < 1 min |
| ta61js | 50 x 20 | jobshop | 2868 | 2868 | easy | OptalCP in < 1 min |
| ta62js | 50 x 20 | jobshop | 2869 | 2869 | medium | OptalCP in < 1h |
| ta63js | 50 x 20 | jobshop | 2755 | 2755 | easy | OptalCP in < 1 min |
| ta64js | 50 x 20 | jobshop | 2702 | 2702 | easy | OptalCP in < 1 min |
| ta65js | 50 x 20 | jobshop | 2725 | 2725 | easy | OptalCP in < 1 min |
| ta66js | 50 x 20 | jobshop | 2845 | 2845 | easy | OptalCP in < 1 min |
| ta67js | 50 x 20 | jobshop | 2825 | 2825 | hard | OptalCP in 4h |
| ta68js | 50 x 20 | jobshop | 2784 | 2784 | easy | OptalCP in < 1 min |
| ta69js | 50 x 20 | jobshop | 3071 | 3071 | easy | OptalCP in < 1 min |
| ta70js | 50 x 20 | jobshop | 2995 | 2995 | medium | CPO in < 1h |
| ta71js | 100 x 20 | jobshop | 5464 | 5464 | easy | OptalCP in < 1 min |
| ta72js | 100 x 20 | jobshop | 5181 | 5181 | easy | OptalCP in < 1 min |
| ta73js | 100 x 20 | jobshop | 5568 | 5568 | easy | OptalCP in < 1 min |
| ta74js | 100 x 20 | jobshop | 5339 | 5339 | easy | OptalCP in < 1 min |
| ta75js | 100 x 20 | jobshop | 5392 | 5392 | medium | CPO in < 1h |
| ta76js | 100 x 20 | jobshop | 5342 | 5342 | easy | OptalCP in < 1 min |
| ta77js | 100 x 20 | jobshop | 5436 | 5436 | easy | OptalCP in < 1 min |
| ta78js | 100 x 20 | jobshop | 5394 | 5394 | easy | OptalCP in < 1 min |
| ta79js | 100 x 20 | jobshop | 5358 | 5358 | easy | OptalCP in < 1 min |
| ta80js | 100 x 20 | jobshop | 5183 | 5183 | easy | OptalCP in < 1 min |
Demikol, Mehta and Uzsoy (1998)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| dmu01 | 20 x 15 | jobshop | 2563 | 2563 | medium | OptalCP in < 1h |
| dmu02 | 20 x 15 | jobshop | 2706 | 2706 | medium | OptalCP in < 1h |
| dmu03 | 20 x 15 | jobshop | 2731 | 2731 | medium | CPO in < 1h |
| dmu04 | 20 x 15 | jobshop | 2669 | 2669 | medium | OptalCP in < 1h |
| dmu05 | 20 x 15 | jobshop | 2749 | 2749 | medium | OptalCP in < 1h |
| dmu06 | 20 x 20 | jobshop | 3244 | 3244 | hard | OptalCP in 2h |
| dmu07 | 20 x 20 | jobshop | 3046 | 3046 | hard | OptalCP in 3h |
| dmu08 | 20 x 20 | jobshop | 3188 | 3188 | medium | OptalCP in < 1h |
| dmu09 | 20 x 20 | jobshop | 3092 | 3092 | medium | OptalCP in < 1h |
| dmu10 | 20 x 20 | jobshop | 2984 | 2984 | medium | OptalCP in < 1h |
| dmu11 | 30 x 15 | jobshop | 3402 | 3430 | open | lb OptalCP / ub PLC2015 |
| dmu12 | 30 x 15 | jobshop | 3481 | 3492 | open | lb OptalCP / ub SS2018 |
| dmu13 | 30 x 15 | jobshop | 3681 | 3681 | hard | OptalCP in 3h |
| dmu14 | 30 x 15 | jobshop | 3394 | 3394 | easy | OptalCP in < 1 min |
| dmu15 | 30 x 15 | jobshop | 3343 | 3343 | easy | OptalCP in < 1 min |
| dmu16 | 30 x 20 | jobshop | 3734 | 3750 | open | lb CPO2015 / ub LHW2024 |
| dmu17 | 30 x 20 | jobshop | 3733 | 3812 | open | lb OptalCP / ub LHW2024 |
| dmu18 | 30 x 20 | jobshop | 3844 | 3844 | hard | OptalCP in 10h |
| dmu19 | 30 x 20 | jobshop | 3707 | 3764 | open | lb OptalCP / ub CS2022 |
| dmu20 | 30 x 20 | jobshop | 3632 | 3699 | open | lb OptalCP / ub LHW2024 |
| dmu21 | 40 x 15 | jobshop | 4380 | 4380 | easy | OptalCP in < 1 min |
| dmu22 | 40 x 15 | jobshop | 4725 | 4725 | easy | CPO in < 1 min |
| dmu23 | 40 x 15 | jobshop | 4668 | 4668 | easy | CPO in < 1 min |
| dmu24 | 40 x 15 | jobshop | 4648 | 4648 | easy | CPO in < 1 min |
| dmu25 | 40 x 15 | jobshop | 4164 | 4164 | easy | CPO in < 1 min |
| dmu26 | 40 x 20 | jobshop | 4647 | 4647 | medium | OptalCP < 1h |
| dmu27 | 40 x 20 | jobshop | 4848 | 4848 | medium | OptalCP in < 1h |
| dmu28 | 40 x 20 | jobshop | 4692 | 4692 | easy | OptalCP in < 1 min |
| dmu29 | 40 x 20 | jobshop | 4691 | 4691 | easy | OptalCP in < 1 min |
| dmu30 | 40 x 20 | jobshop | 4732 | 4732 | medium | OptalCP < 1h |
| dmu31 | 50 x 15 | jobshop | 5640 | 5640 | easy | CPO in < 1 min |
| dmu32 | 50 x 15 | jobshop | 5927 | 5927 | easy | CPO in < 1 min |
| dmu33 | 50 x 15 | jobshop | 5728 | 5728 | easy | CPO in < 1 min |
| dmu34 | 50 x 15 | jobshop | 5385 | 5385 | easy | CPO in < 1 min |
| dmu35 | 50 x 15 | jobshop | 5635 | 5635 | easy | CPO in < 1 min |
| dmu36 | 50 x 20 | jobshop | 5621 | 5621 | easy | OptalCP in < 1 min |
| dmu37 | 50 x 20 | jobshop | 5851 | 5851 | medium | CPO in < 1h |
| dmu38 | 50 x 20 | jobshop | 5713 | 5713 | medium | OptalCP in < 1h |
| dmu39 | 50 x 20 | jobshop | 5747 | 5747 | easy | OptalCP in < 1 min |
| dmu40 | 50 x 20 | jobshop | 5577 | 5577 | easy | OptalCP in < 1 min |
| dmu41 | 20 x 15 | jobshop | 3176 | 3248 | open | lb OptalCP / ub PLC2015 |
| dmu42 | 20 x 15 | jobshop | 3339 | 3390 | open | lb OptalCP / ub SS2018 |
| dmu43 | 20 x 15 | jobshop | 3441 | 3441 | hard | OptalCP in 8h |
| dmu44 | 20 x 15 | jobshop | 3414 | 3475 | open | lb OptalCP / ub SS2018 |
| dmu45 | 20 x 15 | jobshop | 3217 | 3266 | open | lb OptalCP / ub CS2022 |
| dmu46 | 20 x 20 | jobshop | 3780 | 4035 | open | lb OptalCP / ub GR2014 |
| dmu47 | 20 x 20 | jobshop | 3714 | 3939 | open | lb OptalCP / ub GR2014 |
| dmu48 | 20 x 20 | jobshop | 3628 | 3763 | open | lb OptalCP / ub SS2018 |
| dmu49 | 20 x 20 | jobshop | 3543 | 3706 | open | lb OptalCP / ub LHW2024 |
| dmu50 | 20 x 20 | jobshop | 3618 | 3729 | open | lb OptalCP / ub PLC2015 |
| dmu51 | 30 x 15 | jobshop | 4070 | 4156 | open | lb OptalCP / ub SS2018 |
| dmu52 | 30 x 15 | jobshop | 4203 | 4297 | open | lb OptalCP / ub LHW2024 |
| dmu53 | 30 x 15 | jobshop | 4248 | 4378 | open | lb OptalCP / ub CS2022 |
| dmu54 | 30 x 15 | jobshop | 4277 | 4361 | open | lb OptalCP / ub CS2022 |
| dmu55 | 30 x 15 | jobshop | 4191 | 4258 | open | lb OptalCP / ub LHW2024 |
| dmu56 | 30 x 20 | jobshop | 4755 | 4939 | open | lb OptalCP / ub XLGG2022 |
| dmu57 | 30 x 20 | jobshop | 4462 | 4647 | open | lb OptalCP / ub XLGG2022 |
| dmu58 | 30 x 20 | jobshop | 4484 | 4701 | open | lb OptalCP / ub CS2022 |
| dmu59 | 30 x 20 | jobshop | 4366 | 4607 | open | lb OptalCP / ub LHW2024 |
| dmu60 | 30 x 20 | jobshop | 4468 | 4721 | open | lb OptalCP / ub CS2022 |
| dmu61 | 40 x 15 | jobshop | 5038 | 5169 | open | lb OptalCP / ub LHW2024 |
| dmu62 | 40 x 15 | jobshop | 5176 | 5247 | open | lb OptalCP / ub LHW2024 |
| dmu63 | 40 x 15 | jobshop | 5245 | 5312 | open | lb OptalCP / ub LHW2024 |
| dmu64 | 40 x 15 | jobshop | 5155 | 5226 | open | lb OptalCP / ub CS2022 |
| dmu65 | 40 x 15 | jobshop | 5122 | 5173 | open | lb OptalCP / ub LHW2024 |
| dmu66 | 40 x 20 | jobshop | 5526 | 5701 | open | lb OptalCP / ub CS2022 |
| dmu67 | 40 x 20 | jobshop | 5661 | 5779 | open | lb OptalCP / ub SS2018 |
| dmu68 | 40 x 20 | jobshop | 5513 | 5763 | open | lb OptalCP / ub CS2022 |
| dmu69 | 40 x 20 | jobshop | 5511 | 5688 | open | lb OptalCP / ub CS2022 |
| dmu70 | 40 x 20 | jobshop | 5633 | 5868 | open | lb OptalCP / ub CS2022 |
| dmu71 | 50 x 15 | jobshop | 6129 | 6207 | open | lb OptalCP / ub CS2022 |
| dmu72 | 50 x 15 | jobshop | 6434 | 6463 | open | lb CdGKGC2025 / ub SS2018 |
| dmu73 | 50 x 15 | jobshop | 6107 | 6136 | open | lb OptalCP / ub CS2022 |
| dmu74 | 50 x 15 | jobshop | 6168 | 6196 | open | lb OptalCP / ub SS2018 |
| dmu75 | 50 x 15 | jobshop | 6123 | 6189 | open | lb OptalCP / ub SS2018 |
| dmu76 | 50 x 20 | jobshop | 6479 | 6718 | open | lb OptalCP / ub CS2022 |
| dmu77 | 50 x 20 | jobshop | 6520 | 6747 | open | lb OptalCP / ub CS2022 |
| dmu78 | 50 x 20 | jobshop | 6643 | 6755 | open | lb OptalCP / ub CS2022 |
| dmu79 | 50 x 20 | jobshop | 6720 | 6910 | open | lb OptalCP / ub CS2022 |
| dmu80 | 50 x 20 | jobshop | 6460 | 6634 | open | lb OptalCP / ub CS2022 |
Da Col and Teppan (2022)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| tai_j10_m10_1 | 10 x 10 | jobshop | 8219 | 8219 | easy | OptalCP in < 1 min |
| tai_j10_m10_2 | 10 x 10 | jobshop | 7416 | 7416 | easy | OptalCP in < 1 min |
| tai_j10_m10_3 | 10 x 10 | jobshop | 8094 | 8094 | easy | OptalCP in < 1 min |
| tai_j10_m10_4 | 10 x 10 | jobshop | 8657 | 8657 | easy | OptalCP in < 1 min |
| tai_j10_m10_5 | 10 x 10 | jobshop | 7936 | 7936 | easy | OptalCP in < 1 min |
| tai_j10_m10_6 | 10 x 10 | jobshop | 8509 | 8509 | easy | OptalCP in < 1 min |
| tai_j10_m10_7 | 10 x 10 | jobshop | 8299 | 8299 | easy | OptalCP in < 1 min |
| tai_j10_m10_8 | 10 x 10 | jobshop | 7788 | 7788 | easy | OptalCP in < 1 min |
| tai_j10_m10_9 | 10 x 10 | jobshop | 8300 | 8300 | easy | OptalCP in < 1 min |
| tai_j10_m10_10 | 10 x 10 | jobshop | 8481 | 8481 | easy | OptalCP in < 1 min |
| tai_j10_m100_1 | 10 x 100 | jobshop | 56609 | 56609 | easy | OptalCP in < 1 min |
| tai_j10_m100_2 | 10 x 100 | jobshop | 52330 | 52330 | easy | OptalCP in < 1 min |
| tai_j10_m100_3 | 10 x 100 | jobshop | 56412 | 56412 | easy | OptalCP in < 1 min |
| tai_j10_m100_4 | 10 x 100 | jobshop | 54889 | 54889 | easy | OptalCP in < 1 min |
| tai_j10_m100_5 | 10 x 100 | jobshop | 54603 | 54603 | easy | OptalCP in < 1 min |
| tai_j10_m100_6 | 10 x 100 | jobshop | 53723 | 53723 | easy | OptalCP in < 1 min |
| tai_j10_m100_7 | 10 x 100 | jobshop | 55456 | 55456 | easy | OptalCP in < 1 min |
| tai_j10_m100_8 | 10 x 100 | jobshop | 56466 | 56466 | easy | OptalCP in < 1 min |
| tai_j10_m100_9 | 10 x 100 | jobshop | 55096 | 55096 | easy | OptalCP in < 1 min |
| tai_j10_m100_10 | 10 x 100 | jobshop | 56661 | 56661 | easy | OptalCP in < 1 min |
| tai_j10_m1000_1 | 10 x 1000 | jobshop | 515370 | 515370 | easy | OptalCP in < 1 min |
| tai_j10_m1000_2 | 10 x 1000 | jobshop | 513525 | 513525 | easy | OptalCP in < 1 min |
| tai_j10_m1000_3 | 10 x 1000 | jobshop | 508161 | 508161 | easy | OptalCP in < 1 min |
| tai_j10_m1000_4 | 10 x 1000 | jobshop | 513814 | 513814 | easy | OptalCP in < 1 min |
| tai_j10_m1000_5 | 10 x 1000 | jobshop | 517020 | 517020 | easy | OptalCP in < 1 min |
| tai_j10_m1000_6 | 10 x 1000 | jobshop | 517777 | 517777 | easy | OptalCP in < 1 min |
| tai_j10_m1000_7 | 10 x 1000 | jobshop | 514921 | 514921 | easy | OptalCP in < 1 min |
| tai_j10_m1000_8 | 10 x 1000 | jobshop | 522277 | 522277 | easy | OptalCP in < 1 min |
| tai_j10_m1000_9 | 10 x 1000 | jobshop | 511213 | 511213 | easy | OptalCP in < 1 min |
| tai_j10_m1000_10 | 10 x 1000 | jobshop | 509855 | 509855 | easy | OptalCP in < 1 min |
| tai_j100_m10_1 | 100 x 10 | jobshop | 54951 | 54951 | easy | OptalCP in < 1 min |
| tai_j100_m10_2 | 100 x 10 | jobshop | 57160 | 57160 | easy | OptalCP in < 1 min |
| tai_j100_m10_3 | 100 x 10 | jobshop | 54166 | 54166 | easy | OptalCP in < 1 min |
| tai_j100_m10_4 | 100 x 10 | jobshop | 54371 | 54371 | easy | OptalCP in < 1 min |
| tai_j100_m10_5 | 100 x 10 | jobshop | 56142 | 56142 | easy | OptalCP in < 1 min |
| tai_j100_m10_6 | 100 x 10 | jobshop | 52447 | 52447 | easy | OptalCP in < 1 min |
| tai_j100_m10_7 | 100 x 10 | jobshop | 54051 | 54051 | easy | OptalCP in < 1 min |
| tai_j100_m10_8 | 100 x 10 | jobshop | 55624 | 55624 | easy | OptalCP in < 1 min |
| tai_j100_m10_9 | 100 x 10 | jobshop | 54210 | 54210 | easy | OptalCP in < 1 min |
| tai_j100_m10_10 | 100 x 10 | jobshop | 55464 | 55464 | easy | OptalCP in < 1 min |
| tai_j100_m100_1 | 100 x 100 | jobshop | 62843 | 77127 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_2 | 100 x 100 | jobshop | 62814 | 77322 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_3 | 100 x 100 | jobshop | 61533 | 76910 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_4 | 100 x 100 | jobshop | 64742 | 78604 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_5 | 100 x 100 | jobshop | 61766 | 78023 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_6 | 100 x 100 | jobshop | 61360 | 77895 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_7 | 100 x 100 | jobshop | 64040 | 77670 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_8 | 100 x 100 | jobshop | 63224 | 78031 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_9 | 100 x 100 | jobshop | 62631 | 79419 | open | lb OptalCP / ub OptalCP |
| tai_j100_m100_10 | 100 x 100 | jobshop | 64866 | 77837 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_1 | 100 x 1000 | jobshop | 522298 | 544732 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_2 | 100 x 1000 | jobshop | 530375 | 546598 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_3 | 100 x 1000 | jobshop | 530560 | 549372 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_4 | 100 x 1000 | jobshop | 527101 | 545138 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_5 | 100 x 1000 | jobshop | 517728 | 545535 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_6 | 100 x 1000 | jobshop | 522907 | 545730 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_7 | 100 x 1000 | jobshop | 522537 | 546899 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_8 | 100 x 1000 | jobshop | 526428 | 549337 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_9 | 100 x 1000 | jobshop | 528097 | 550693 | open | lb OptalCP / ub OptalCP |
| tai_j100_m1000_10 | 100 x 1000 | jobshop | 521766 | 543797 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m10_1 | 1000 x 10 | jobshop | 515334 | 515334 | easy | OptalCP in < 1 min |
| tai_j1000_m10_2 | 1000 x 10 | jobshop | 509226 | 509226 | easy | OptalCP in < 1 min |
| tai_j1000_m10_3 | 1000 x 10 | jobshop | 517493 | 517493 | easy | OptalCP in < 1 min |
| tai_j1000_m10_4 | 1000 x 10 | jobshop | 519369 | 519369 | easy | OptalCP in < 1 min |
| tai_j1000_m10_5 | 1000 x 10 | jobshop | 513881 | 513881 | easy | OptalCP in < 1 min |
| tai_j1000_m10_6 | 1000 x 10 | jobshop | 511932 | 511932 | easy | OptalCP in < 1 min |
| tai_j1000_m10_7 | 1000 x 10 | jobshop | 523900 | 523900 | easy | OptalCP in < 1 min |
| tai_j1000_m10_8 | 1000 x 10 | jobshop | 513101 | 513101 | easy | OptalCP in < 1 min |
| tai_j1000_m10_9 | 1000 x 10 | jobshop | 508701 | 508701 | easy | OptalCP in < 1 min |
| tai_j1000_m10_10 | 1000 x 10 | jobshop | 521360 | 521360 | easy | OptalCP in < 1 min |
| tai_j1000_m100_1 | 1000 x 100 | jobshop | 525343 | 539120 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_2 | 1000 x 100 | jobshop | 528088 | 540895 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_3 | 1000 x 100 | jobshop | 522793 | 534794 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_4 | 1000 x 100 | jobshop | 524271 | 536317 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_5 | 1000 x 100 | jobshop | 531216 | 532016 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_6 | 1000 x 100 | jobshop | 518763 | 535189 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_7 | 1000 x 100 | jobshop | 527093 | 535894 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_8 | 1000 x 100 | jobshop | 519524 | 533985 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_9 | 1000 x 100 | jobshop | 520889 | 539511 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m100_10 | 1000 x 100 | jobshop | 529112 | 540884 | open | lb OptalCP / ub OptalCP |
| tai_j1000_m1000_1 | 1000 x 1000 | jobshop | 549392 | 877062 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_2 | 1000 x 1000 | jobshop | 549043 | 877115 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_3 | 1000 x 1000 | jobshop | 552580 | 878805 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_4 | 1000 x 1000 | jobshop | 547670 | 876363 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_5 | 1000 x 1000 | jobshop | 545193 | 877562 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_6 | 1000 x 1000 | jobshop | 547286 | 876067 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_7 | 1000 x 1000 | jobshop | 545877 | 875891 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_8 | 1000 x 1000 | jobshop | 549220 | 876456 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_9 | 1000 x 1000 | jobshop | 543559 | 875914 | open | lb OptalCP / ub Hexaly2024 |
| tai_j1000_m1000_10 | 1000 x 1000 | jobshop | 541530 | 874820 | open | lb OptalCP / ub Hexaly2024 |
DaCol and Teppan - reentrant jobshop (2022)
| Instance | Size | Problem | LB | UB | Type | Solved by |
|---|---|---|---|---|---|---|
| long-100-10000-1 | 103 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-100-10000-2 | 103 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-100-10000-3 | 103 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-10000-1 | 1002 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-10000-2 | 1002 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-10000-3 | 1002 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-100-100000-1 | 109 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-100-100000-2 | 114 x 100 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| long-100-100000-3 | 109 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-100000-1 | 1002 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-100000-2 | 1002 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| long-1000-100000-3 | 1003 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-100-10000-1 | 2162 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-100-10000-2 | 2192 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-100-10000-3 | 2169 x 100 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-1000-10000-1 | 2882 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-1000-10000-2 | 2863 x 1000 | reentrant jobshop | 600000 | 600000 | easy | OptalCP in < 1 min |
| short-1000-10000-3 | 2897 x 1000 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| short-100-100000-1 | 20685 x 100 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| short-100-100000-2 | 20870 x 100 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| short-100-100000-3 | 20767 x 100 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| short-1000-100000-1 | 21280 x 1000 | reentrant jobshop | 600000 | 600038 | open | lb OptalCP / ub OptalCP |
| short-1000-100000-2 | 21349 x 1000 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
| short-1000-100000-3 | 21338 x 1000 | reentrant jobshop | 600000 | 600000 | medium | OptalCP in < 1h |
DaCol and Tepan report instance short-1000-100000-1 was solved to optimality by CP Optimizer in 6h which we haven’t been able to reproduce (with CPO any other solver). We are still investigating
Publications (best known solutions)
The upper and lower bounds come from
-
NS2002 (1 bound - ta30js) : Nowicki, E., & Smutnicki, C. (2002). Some new tools to solve the job shop problem. Raport serii: Preprinty, 60.
-
PSV2010 (1 bound - ta32js) : Pardalos, P. M., Shylo, O. V., & Vazacopoulos, A. (2010). Solving job shop scheduling problems utilizing the properties of backbone and “big valley”. Computational Optimization and Applications, 47, 61-76.
-
GR2014 (6 bounds in dmu, tajs and swv) : Gonçalves, J. F., & Resende, M. G. (2014). An extended Akers graphical method with a biased random‐key genetic algorithm for job‐shop scheduling. International Transactions in Operational Research, 21(2), 215-246.
-
CPO2015 (4 bounds in dmu and tajs):
-
Vilím, P., Laborie, P., & Shaw, P. (2015). Failure-directed search for constraint-based scheduling. In Integration of AI and OR Techniques in Constraint Programming: 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings 12 (pp. 437-453). Springer International Publishing.
-
Vilım, P., Laborie, P., & Shaw, P. Failure-directed Search for Constraint-based Scheduling Detailed Experimental Results.
-
-
Mu2015 (1 bound - swv08) : Personal communication to optimizizer, probably based on Murovec, B. (2015). Job-shop local-search move evaluation without direct consideration of the criterion’s value. European Journal of Operational Research, 241(2), 320-329.
-
PLC2015 (6 bounds in dmu and tajs) : Peng, B., Lü, Z., & Cheng, T. C. E. (2015). A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research, 53, 154-164.
-
SS2018 (11 bounds in dmu and swv) : Shylo, O. V., & Shams, H. (2018). Boosting binary optimization via binary classification: A case study of job shop scheduling
-
CS2022 (19 bounds in dmu and tajs) : Constantino, O. H., & Segura, C. (2022). A parallel memetic algorithm with explicit management of diversity for the job shop scheduling problem. Applied Intelligence, 52(1), 141-153.
-
XLGG2022 (2 bounds in dmu) : Xie, J., Li, X., Gao, L., & Gui, L. (2022). A hybrid algorithm with a new neighborhood structure for job shop scheduling problems. Computers & Industrial Engineering, 169, 108205.
-
Hexaly2024 (10 bounds - tai) : Lea Blaise (2014) https://www.hexaly.com/benchmarks/hexaly-vs-cp-optimizer-vs-CP-SAT-on-the-job-shop-scheduling-problem-jssp
-
LHW2024 (12 bounds - dmu, tajs) : Mingjie Li, Jin-Kao Hao & Qinghua Wu (2025). Combining Hash-based Tabu Search and Frequent Pattern Mining for Job-Shop Scheduling. IISE Transactions, 1–16.
-
CdGKGC2025 (1 bound dmu72) : Marc-Emmanuel Coupvent des Graviers, Lotfi Kobrosly, Christophe Guettier, and Tristan Cazenave (2025). Updating Lower and Upper Bounds for the Job-Shop Scheduling Problem Test Instances CoRR abs/2504.16106
All other bounds were found by OptalCP
Test instances
Reference tests
We provide these tests as a reference, you should get something similar on your hardware (multi-core engines are inherently non-deterministic hence each run returns slightly different results) or find an explanation of why the engines don’t behave as expected. We strongly encourage you to run all engines you want to compare against on your own hardware.
LA instances
On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds
- OptalCP Academic Version 2025.6.1 with 2 FDS, 1 FDSLB, 1 LNS (3 provers, 1 searcher)
- CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
| Instance | OptalCP | CP-SAT |
|---|---|---|
| la01 | 666 in 0s | 666 in 0s |
| la02 | 655 in 0s | 655 in 0s |
| la03 | 597 in 0s | 597 in 0s |
| la04 | 590 in 0s | 590 in 0s |
| la05 | 593 in 0s | 593 in 0s |
| la06 | 926 in 0s | 926 in 0s |
| la07 | 890 in 0s | 890 in 0s |
| la08 | 863 in 0s | 863 in 0s |
| la09 | 951 in 0s | 951 in 0s |
| la10 | 958 in 0s | 958 in 0s |
| la11 | 1222 in 0s | 1222 in 0s |
| la12 | 1039 in 0s | 1039 in 0s |
| la13 | 1150 in 0s | 1150 in 0s |
| la14 | 1292 in 0s | 1292 in 0s |
| la15 | 1207 in 0s | 1207 in 0s |
| la16 | 945 in 0s | 945 in 0s |
| la17 | 784 in 0s | 784 in 0s |
| la18 | 848 in 0s | 848 in 0s |
| la19 | 842 in 0s | 842 in 1s |
| la20 | 902 in 0s | 902 in 0s |
| la21 | 1046 in 2s | 1046 in 49s |
| la22 | 927 in 0s | 927 in 3s |
| la23 | 1032 in 0s | 1032 in 0s |
| la24 | 935 in 1s | 935 in 12s |
| la25 | 977 in 1s | 977 in 11s |
| la26 | 1218 in 0s | 1218 in 2s |
| la27 | 1235 in 9s | 1235 in 9s |
| la28 | 1216 in 0s | 1216 in 3s |
| la29 | 1152 in 217s | 1130 .. 1162 in 600s |
| la30 | 1355 in 0s | 1355 in 1s |
| la31 | 1784 in 0s | 1784 in 1s |
| la32 | 1850 in 0s | 1850 in 0s |
| la33 | 1719 in 0s | 1719 in 1s |
| la34 | 1721 in 0s | 1721 in 1s |
| la35 | 1888 in 0s | 1888 in 0s |
| la36 | 1268 in 0s | 1268 in 6s |
| la37 | 1397 in 0s | 1397 in 1s |
| la38 | 1196 in 9s | 1196 in 148s |
| la39 | 1233 in 0s | 1233 in 2s |
| la40 | 1222 in 2s | 1222 in 23s |
TA instances
On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds
- OptalCP Academic Version 2025.6.1 with 2 FDS, 1 FDSLB, 1 LNS (3 provers, 1 searcher)
- CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
| Instance | OptalCP | CP-SAT |
|---|---|---|
| ta01js | 1231 in 0s | 1231 in 6s |
| ta02js | 1244 in 2s | 1244 in 44s |
| ta03js | 1218 in 2s | 1218 in 19s |
| ta04js | 1175 in 2s | 1175 in 53s |
| ta05js | 1224 in 12s | 1224 in 352s |
| ta06js | 1238 in 163s | 1203 .. 1238 in 600s |
| ta07js | 1227 in 14s | 1227 in 200s |
| ta08js | 1217 in 8s | 1217 in 130s |
| ta09js | 1274 in 7s | 1274 in 84s |
| ta10js | 1241 in 2s | 1241 in 20s |
| ta11js | 1326 .. 1365 in 600s | 1310 .. 1373 in 600s |
| ta12js | 1367 in 231s | 1352 .. 1387 in 600s |
| ta13js | 1325 .. 1342 in 600s | 1279 .. 1348 in 600s |
| ta14js | 1345 in 0s | 1345 in 9s |
| ta15js | 1331 .. 1339 in 600s | 1304 .. 1351 in 600s |
| ta16js | 1343 .. 1363 in 600s | 1300 .. 1370 in 600s |
| ta17js | 1462 in 3s | 1462 in 88s |
| ta18js | 1389 .. 1398 in 600s | 1361 .. 1414 in 600s |
| ta19js | 1327 .. 1343 in 600s | 1299 .. 1368 in 600s |
| ta20js | 1338 .. 1351 in 600s | 1316 .. 1363 in 600s |
| ta21js | 1625 .. 1653 in 600s | 1583 .. 1655 in 600s |
| ta22js | 1544 .. 1616 in 600s | 1533 .. 1613 in 600s |
| ta23js | 1513 .. 1564 in 600s | 1496 .. 1586 in 600s |
| ta24js | 1644 in 282s | 1613 .. 1653 in 600s |
| ta25js | 1543 .. 1608 in 600s | 1531 .. 1619 in 600s |
| ta26js | 1577 .. 1659 in 600s | 1562 .. 1673 in 600s |
| ta27js | 1639 .. 1691 in 600s | 1627 .. 1702 in 600s |
| ta28js | 1603 in 183s | 1588 .. 1609 in 600s |
| ta29js | 1553 .. 1635 in 600s | 1537 .. 1644 in 600s |
| ta30js | 1513 .. 1605 in 600s | 1488 .. 1612 in 600s |
| ta31js | 1764 .. 1766 in 600s | 1764 .. 1768 in 600s |
| ta32js | 1774 .. 1817 in 600s | 1774 .. 1830 in 600s |
| ta33js | 1774 .. 1824 in 600s | 1783 .. 1857 in 600s |
| ta34js | 1828 .. 1849 in 600s | 1828 .. 1846 in 600s |
| ta35js | 2007 in 2s | 2007 in 11s |
| ta36js | 1819 .. 1826 in 600s | 1819 in 413s |
| ta37js | 1771 .. 1796 in 600s | 1771 .. 1812 in 600s |
| ta38js | 1673 .. 1688 in 600s | 1673 .. 1732 in 600s |
| ta39js | 1795 in 51s | 1795 in 506s |
| ta40js | 1632 .. 1709 in 600s | 1643 .. 1745 in 600s |
| ta41js | 1858 .. 2073 in 600s | 1890 .. 2100 in 600s |
| ta42js | 1867 .. 1969 in 600s | 1875 .. 1985 in 600s |
| ta43js | 1809 .. 1890 in 600s | 1809 .. 1941 in 600s |
| ta44js | 1923 .. 2022 in 600s | 1938 .. 2083 in 600s |
| ta45js | 1991 .. 2016 in 600s | 1997 .. 2042 in 600s |
| ta46js | 1940 .. 2060 in 600s | 1945 .. 2057 in 600s |
| ta47js | 1782 .. 1936 in 600s | 1800 .. 1986 in 600s |
| ta48js | 1905 .. 1983 in 600s | 1912 .. 2022 in 600s |
| ta49js | 1903 .. 2016 in 600s | 1927 .. 2051 in 600s |
| ta50js | 1806 .. 1982 in 600s | 1821 .. 2003 in 600s |
| ta51js | 2760 in 6s | 2760 in 329s |
| ta52js | 2756 in 6s | 2756 in 401s |
| ta53js | 2717 in 2s | 2717 in 104s |
| ta54js | 2839 in 2s | 2839 in 29s |
| ta55js | 2679 in 10s | 2679 .. 2693 in 600s |
| ta56js | 2781 in 4s | 2781 in 105s |
| ta57js | 2943 in 2s | 2943 in 60s |
| ta58js | 2885 in 2s | 2885 in 157s |
| ta59js | 2655 in 7s | 2655 .. 2682 in 600s |
| ta60js | 2723 in 5s | 2723 in 562s |
| ta61js | 2868 in 8s | 2868 .. 2916 in 600s |
| ta62js | 2869 .. 2877 in 600s | 2869 .. 3008 in 600s |
| ta63js | 2755 in 45s | 2755 .. 2825 in 600s |
| ta64js | 2702 in 12s | 2702 .. 2756 in 600s |
| ta65js | 2725 in 30s | 2725 .. 2842 in 600s |
| ta66js | 2845 in 16s | 2845 .. 2916 in 600s |
| ta67js | 2825 .. 2826 in 600s | 2825 .. 2869 in 600s |
| ta68js | 2784 in 6s | 2784 .. 2822 in 600s |
| ta69js | 3071 in 7s | 3071 in 286s |
| ta70js | 2995 in 28s | 2995 .. 3109 in 600s |
| ta71js | 5464 in 17s | 5464 .. 5648 in 600s |
| ta72js | 5181 in 15s | 5181 .. 5310 in 600s |
| ta73js | 5568 in 17s | 5568 .. 5648 in 600s |
| ta74js | 5339 in 13s | 5339 .. 5367 in 600s |
| ta75js | 5392 in 31s | 5392 .. 5693 in 600s |
| ta76js | 5342 in 19s | 5342 .. 5475 in 600s |
| ta77js | 5436 in 11s | 5436 .. 5488 in 600s |
| ta78js | 5394 in 15s | 5394 .. 5522 in 600s |
| ta79js | 5358 in 21s | 5358 .. 5463 in 600s |
| ta80js | 5183 in 15s | 5183 .. 5304 in 600s |
YN instances
On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds
- OptalCP Demo Version 2025.7.0 with 1 FDS, 1 FDSLB, 2 LNS (2 provers, 2 searchers)
- CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
| Instance | OptalCP | CP-SAT |
|---|---|---|
| yn1 | 860 .. 884 in 600s | 837 .. 889 in 600s |
| yn2 | 871 .. 914 in 600s | 858 .. 917 in 600s |
| yn3 | 853 .. 903 in 600s | 842 .. 918 in 600s |
| yn4 | 932 .. 977 in 600s | 910 .. 985 in 600s |
TAI 100 x 100 instances
On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds
- OptalCP Academic Version 2025.8.0 with 1 FDS, 3 LNS (1 prover, 3 searchers)
- CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
| Instance | OptalCP | CP-SAT |
|---|---|---|
| tai_j100_m100_1 | 62521 .. 79694 in 600s | 62303 .. 89932 in 601s |
| tai_j100_m100_2 | 62741 .. 79265 in 600s | 62032 .. 89636 in 601s |
| tai_j100_m100_3 | 61197 .. 78375 in 600s | 60201 .. 89282 in 601s |
| tai_j100_m100_4 | 64449 .. 80653 in 600s | 60980 .. 92178 in 601s |
| tai_j100_m100_5 | 61340 .. 79746 in 600s | 61165 .. 90602 in 601s |
| tai_j100_m100_6 | 60932 .. 79567 in 600s | 59272 .. 92399 in 601s |
| tai_j100_m100_7 | 63641 .. 78857 in 600s | 62755 .. 90905 in 601s |
| tai_j100_m100_8 | 62989 .. 79131 in 600s | 61238 .. 90028 in 601s |
| tai_j100_m100_9 | 62379 .. 80599 in 600s | 60619 .. 92256 in 601s |
| tai_j100_m100_10 | 64866 .. 79005 in 600s | 61008 .. 90217 in 601s |