The jobshop scheduling problem benchmark library

The JSPLib is an informal group of instances (ft, la, abz, orb, swv, yn, ta, dmu to which we added tai, long and short) that have been used to investigate solution methods for the jobshop problem. On this page we keep track of the best known solutions (BKS) and classify the instances based on difficulty.

The data and source code can be found in the Github repository This document is visible as a README.md in the Github folder jobshop or as a webpage

Table of Contents


Overview of the jobshop benchmark library

All instances in the benchmark follow the standard jobshop format. The DaColTeppan instances use a conservative extension of the existing jobshop format.

Jobshop instances (332)

  • 3 instances ft from Fischer and Thompson 1963
  • 40 instances la from Lawrence 1984
  • 5 instances abz from Adams, Balas and Zawack 1988
  • 10 instances orb from Applegate and Cook 1991
  • 20 instances swv from Storer, Wu and Vaccari 1992
  • 4 instances yn from Yamada and Nakano 1992
  • 80 instances ta from Taillard 1993
  • 80 instances dmu from Demirkol, Mehta and Uzsoy 1998
  • 90 instances tai from Da Col and Teppan 2022

Reentrant jobshop instances (24)

  • 12 instances long from Da Col and Teppan 2022
  • 12 instances short from Da Col and Teppan 2022

Classification of the jobshop instances

We use the following engines as references for the benchmark

  • IBM ILOG CP Optimizer : representative of the CP-scheduling family of engines
  • Google CP-SAT : representative of the lazy clause generation family of engines
  • OptalCP : representative of the lazy clause generation family of engines

We have dropped Cplex from the jobshop tests due to poor performance of linear solvers as reported by multiple authors in the literature and confirmed by ourselves.

Instances are divided into

  • easy : solved to optimality (with proof) in 1 minute by at least 1 reference engine
  • medium : solved to optimality (with proof) in 1 hour by at least 1 reference engine
  • hard : solved to optimality (with proof) in > 1h by at least 1 reference engine
  • closed : allegedly solved to optimality. Most of the time the optimal solution is known because 2 different methods independently found equal upper and lower bounds. The problem moves to hard only when the optimality proof can be reproduced by a reference engine.
  • open : no proof of optimality

Currently the instances divide as follows

  • ft : 3 easy
  • la : 39 easy, 1 medium
  • abz : 2 easy, 2 medium, 1 hard
  • orb : 10 easy
  • swv : 7 easy, 4 medium, 6 hard, 3 open
  • yn : 4 hard
  • ta : 40 easy, 21 medium, 7 hard, 12 open
  • dmu : 17 easy, 13 medium, 5 hard, 45 open
  • tai : 50 easy, 40 open
  • long : 11 easy, 1 medium
  • short : 5 easy, 6 medium, 1 open

Previous versions of these results had some closed instances which we proceed to solve with OptalCP running for longer times to confirm their status of solved

Formats

There are three main formats, the standard, the DaColTeppan and the taillard

Standard format

#n #m
((machine duration ){m}\n){n}

Jobshop standard format Image from Da Col & Teppan

For instance l01 on standard format is

10	5	
1	21	0	53	4	95	3	55	2	34
0	21	3	52	4	16	2	26	1	71
3	39	4	98	1	42	2	31	0	12
1	77	0	55	4	79	2	66	3	77
0	83	3	34	2	64	1	19	4	37
1	54	2	43	4	79	0	92	3	62
3	69	4	77	1	87	2	87	0	93
2	38	0	60	1	41	3	24	4	83
3	17	1	49	4	25	0	44	2	98
4	77	3	79	2	43	1	75	0	96


Da Col Teppan format

#n #m
((machine duration )+ -1 -1\n){n}

Jobshop DaColTeppan format Image from Da Col & Teppan

In the DaColTeppan format

  • there can be any number of tasks per job
  • there can be various tasks in a job running on the same machine (reentrance)
  • the jobs end in a -1 -1

The DaColTeppan format is actually a format for the reentrant jobshop problem which is a generalization of the jobshop, common in some industrial environments like semiconductors

For instance

10	5	
1	21	0	53	-1  -1
0	21	3	52	 4	16	2	26	1	71   4	95	3	55	 2	34 -1 -1
3	39	4	98	 1	42	2	31	0	12  79	 2	66	3	77  -1 -1
1	77	0	55	 4  -1 -1
0	83	-1 -1
1	54	2	43	4	79	0	92	3	62   3	34	 2	64	 1	19	4	37 -1 -1
3	69	4	77	1	87	2	87	0	93  41	 3	24	 4	83  -1 -1
2	38	0	60	1	-1 -1
3	17	1	49	4	25	0	44	2	98 -1 -1
4	77	3	79	2	43	1	75	0	96 -1 -1

To be totally conservative, the format should remove the last two -1 -1 and consider the end of line is the separator between jobs. It is not hard to do a parser that accepts both.


Taillard format

The taillard format first lists the machines, then the durations

#n #m
((machine ){m}\n){n}
((duration ){m}\n){n}

For instance l01 in taillard format is

10	5	
1	0	4	3	2
0	3	4	2	1
3	4	1	2	0
1	0	4	2	3
0	3	2	1	4
1	2	4	0	3
3	4	1	2	0
2	0	1	3	4
3	1	4	0	2
4	3	2	1	0
21	53	95	55	34
21	52	16	26	71
39	98	42	31	12
77	55	79	66	77
83	34	64	19	37
54	43	79	92	62
69	77	87	87	93
38	60	41	24	83
17	49	25	44	98
77	79	43	75	96


Publications (instances)

The instances come from the following publications

  • H. Fisher, G.L. Thompson (1963), Probabilistic learning combinations of local job-shop scheduling rules, J.F. Muth, G.L. Thompson (eds.), Industrial Scheduling, Prentice Hall, Englewood Cliffs, New Jersey, 225-251.

  • Lawrence, S. (1984). Resource constrained project scheduling: An experimental investigation of heuristic scheduling techniques (Supplement). Graduate School of Industrial Administration, Carnegie-Mellon University.

  • Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling. Management science, 34(3), 391-401.

  • Applagate, D., & Cook, W. (1991). A computational study of the job-shop scheduling instance. ORSA J. Comput, 3, 49-51.

  • Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing instances with application to job shop 38 (1992) 1495–1509 Manage. Sci, 38, 1495-1509.

  • T. Yamada, R. Nakano (1992), A genetic algorithm applicable to large-scale job-shop instances, R. Manner, B. Manderick (eds.),Parallel instance solving from nature 2, North-Holland, Amsterdam, 281-290

  • Taillard, E. (1993). Benchmarks for basic scheduling problems. european journal of operational research, 64(2), 278-285.

  • Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European Journal of Operational Research, 109(1), 137-141.

  • Da Col, G., & Teppan, E. C. (2022). Industrial-size job shop scheduling with constraint programming. Operations Research Perspectives, 9, 100249.


Jobshop variants

Many variants of the jobshop problem can be solved with the same data or simple addition of parameters

Jobshop

The classical jobshop problem has 2 constraints

  • intrajob precedences
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{start}_j^r + \mathrm{Duration}_j^r \leq \mathrm{start}_j^{r+1}\]
  • no overlap per machine
\[\forall m \in \mathrm{machines}, \forall j_1,j_2 \in \mathrm{jobs} \quad \left( \mathrm{start}\_{j_1}^m + \mathrm{Duration}\_{j_1}^m \leq \mathrm{start}\_{j_2}^m \right) \vee \left( \mathrm{start}\_{j_2}^m + \mathrm{Duration}\_{j_2}^m \leq \mathrm{start}\_{j_1}^m \right )\]

For commodity the later constraint can be written

\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{start}_j^m + \mathrm{Duration}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]


No buffer jobshop (blocking jobshop)

In the classic jobshop there is implicitly a buffer area in front of each machine where tasks can wait to be processed. In the non-buffer jobshop, also called blocking jobshop this area doesn’t exist, as a result a job (j,r)processed on machine m blocks this machine until (j,r+1) starts being processed on the next machine.

From this problem we introduce a new variable $\mathrm{end}_j^m$

  • the tasks are variable length with a minimum length of $\mathrm{Duration}_j^m$
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{machines} \quad \mathrm{start}_j^m + \mathrm{Duration}_j^m \leq \mathrm{end}_j^m\]
  • for each job, the task of rank $r+1$ starts as soon as the task of rank $r$ ends
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{end}_j^r = \mathrm{start}_j^{r+1}\]
  • no overlap per machine
\[\forall m \in \mathrm{machines}, \forall j_1,j_2 \in \mathrm{jobs}\quad \left( \mathrm{end}\_{j_1}^m \leq \mathrm{start}\_{j_2}^m \right) \vee \left( \mathrm{end}\_{j_2}^m \leq \mathrm{start}\_{j_1}^m \right )\]

or

\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{end}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]


The extra variables $\mathrm{end}$ can be pre-processed out of the equations


No-wait jobshop

In the no-wait jobshop variant, once the processing of a job has started, it has to go through all machines without interruption.

The equations are reminiscent of the blocking jobshop but without the variable length activities

  • for each job, the task of rank $r+1$ starts as soon as the task of rank $r$ ends
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{end}_j^r = \mathrm{start}_j^{r+1}\]
  • no overlap per machine
\[\forall m \in \mathrm{machines}, \forall j_1,j_2 \in \mathrm{jobs}\quad \left( \mathrm{end}\_{j_1}^m \leq \mathrm{start}\_{j_2}^m \right) \vee \left( \mathrm{end}\_{j_2}^m \leq \mathrm{start}\_{j_1}^m \right )\]

or

\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{end}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]


Cumulative jobshop

In the cumulative jobshop, the capacity of the capacity of the machines is not unitary anymore. In other words there is a limit $C_m$ on the number of tasks that can be simultaneously processed by machine $m$

The constraints of the problem are

  • intrajob precedences
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{start}_j^r + \mathrm{Duration}_j^r \leq \mathrm{start}_j^{r+1}\]
  • capacity per machine
\[\forall m \in \mathrm{machines}, \forall t \in \mathrm{time} \quad \sum_j \left( \mathrm{start}^m_j \leq t \lt \mathrm{start}^m_j + \mathrm{Duration}^m_j \right) \leq C_m\]

It is advisable to avoid having an unlimited number of equations, in this case because of the explicit dependency on time, even if it just for notation. We therefore introduce the functional notation for cumulative constraints

\[\forall m \in \mathrm{machines}\quad \mathrm{cumul}_m(t) = \sum_j \mathrm{step}(\mathrm{start}_j^m) - \mathrm{step}(\mathrm{start}_j^m + \mathrm{Duration}_j^m)\]

Here $\mathrm{step}(t)$ is the function that has value 1 at time $t$ and 0 otherwise, as a result $\mathrm{cumul}$ is a function of time. Each configuration of $\mathrm{start}_j^m$ values defines a different cumulative function.

The constraints of the problem become

  • intrajob precedences
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{start}_j^r + \mathrm{Duration}_j^r \leq \mathrm{start}_j^{r+1}\]
  • capacity per machine
\[\forall m \in \mathrm{machines}\quad \sum_j \mathrm{step}(\mathrm{start}_j^m) - \mathrm{step}(\mathrm{start}_j^m + \mathrm{Duration}_j^m) \leq C_m\]


Jobshop with operators - workers

In the jobshop with operators, workers have to be assigned to the machines while the tasks are being performed.

  • when the operator assignment can be interrupted (preemptive operators) the problem becomes a jobshop with maximum number of simultaneous jobs.
  • when the operator assignment cannot be interrupted (non-preemptive operators) the operators need to be assigned to jobs individually and they cannot be assigned to simultaneous jobs

Jobshop with preemptive operators

The constraints of the problem become

  • intrajob precedences
\[\forall j \in \mathrm{jobs}, \forall r \in \mathrm{ranks} \quad \mathrm{start}_j^r + \mathrm{Duration}_j^r \leq \mathrm{start}_j^{r+1}\]
  • no overlap per machine
\[\forall m \in \mathrm{machines} \quad \mathrm{noOverlap} \ \lbrace \ [ \mathrm{start}_j^m \dots \ \mathrm{start}_j^m + \mathrm{Duration}_j^m ] \mid j \in \mathrm{jobs} \ \rbrace\]
  • maximum number of simultaneous tasks
\[\sum_m \sum_j \mathrm{step}(\mathrm{start}_j^m) - \mathrm{step}(\mathrm{start}_j^m + \mathrm{Duration}_j^m) \leq \mathrm{Op}\]

Other jobshop variants

Because these jobshop variants require extra data, we cannot run them over the standard benchmark

Jobshop with arbitrary precedences

Instead of having precedences only within the tasks of a job, there is a more general precedence graph

Precedence graph

Jobshop with sequence dependent setup times

There are setup times in the machines to switch from one job to another

Notice that this variant is only interesting if the setup times are sequence-dependent. Otherwise it is equivalent to increase each task by the length of the setup time and to solve an usual jobshop

Flexible jobshop

The tasks of a job can be processed by any machine in a predefined group of similar machines.

Please refer to the flexible-jobshop section of this benchmark for more information


Jobshop benchmark - JSPLib

The JSPLib is an informal group of instances (ft, la, abz, orb, swv, yn, ta, dmu to which we added tai, short and long) that have been used to investigate solution methods for the jobshop problem. On this page we keep track of the best known solutions (BKS) and classify the instances based on difficulty.

An instance is considered

  • easy if it is solved to optimality by a reference engine in < 1 minute
  • medium if it is solved to optimality by a reference engine in < 1h
  • hard if it is solved to optimality by a reference engine in > 1h
  • closed if the combination of upper and lower bounds found in the literature allows concluding the value of the optimal solution is known
  • open otherwise


For each instance we indicate the publication or engine that reaches that bound (lower or upper). When reporting the results:

  • we give priority to engines over publications because of reproductibility of the results
  • we give priority to the fastest engine to attain the bound
  • when an engine attains a bound previously reported in the literature, we attribute the bound to the engine and remove the correponding paper from the list of relevant references

Other databases keep instead the first publication or method to have achieved that bound for historical reference. This work instead is meant for engine and algorithm developers to have means of reproducing the claimed results for comparison.

Similar work

Our work was inspired by the outstanding work of Naderi, Ruiz and Roshanaei Mixed-Integer Programming versus Constraint Programming for shop scheduling problems : New Results and Outlook [NRR2022] which compares CPO, Cplex, Gurobi and OR-tools on a benchmark of 6623 instances over 17 benchmarks with a timeout of 1h. They have made all the raw results available

We borrowed references for existing best known bounds from


The upper bounds available in optimizizer are verified before publication (which we don’t do directly - our verification is the fact that an engine achieves the same value). We encourage you to also visit his site.

We also think https://www.jobshoppuzzle.com/ is a very cool site with interactive visualizations of jobshop heuristics and solutions.

Best known solutions - JSPLib

If you visualize the markdown in Visual Studio Code you will have colors !

Fisher and Thompson (1963)

FT instances are also known as MT because the 1963 paper of Fisher and Thompson was published in the book “Industrial scheduling” by Muth and Thompson.

InstanceSizeProblemLBUBTypeSolved by
ft066 x 6jobshop5555easyCPO in < 1 min
ft1010 x 10jobshop930930easyCPO in < 1 min
ft2020 x 5jobshop11651165easyCPO in < 1 min

Lawrence (1984)

InstanceSizeProblemLBUBTypeSolved by
la0110 x 5jobshop666666easyCPO in < 1 min
la0210 x 5jobshop655655easyCPO in < 1 min
la0310 x 5jobshop597597easyCPO in < 1 min
la0410 x 5jobshop590590easyCPO in < 1 min
la0510 x 5jobshop593593easyCPO in < 1 min
la0615 x 5jobshop926926easyCPO in < 1 min
la0715 x 5jobshop890890easyCPO in < 1 min
la0815 x 5jobshop863863easyCPO in < 1 min
la0915 x 5jobshop951951easyCPO in < 1 min
la1015 x 5jobshop958958easyCPO in < 1 min
la1120 x 5jobshop12221222easyCPO in < 1 min
la1220 x 5jobshop10391039easyCPO in < 1 min
la1320 x 5jobshop11501150easyCPO in < 1 min
la1420 x 5jobshop12921292easyCPO in < 1 min
la1520 x 5jobshop12071207easyCPO in < 1 min
la1610 x 10jobshop945945easyCPO in < 1 min
la1710 x 10jobshop784784easyCPO in < 1 min
la1810 x 10jobshop848848easyCPO in < 1 min
la1910 x 10jobshop842842easyCPO in < 1 min
la2010 x 10jobshop902902easyCPO in < 1 min
la2115 x 10jobshop10461046easyOptalCP in < 1 min
la2215 x 10jobshop927927easyCPO in < 1 min
la2315 x 10jobshop10321032easyCPO in < 1 min
la2415 x 10jobshop935935easyCPO in < 1 min
la2515 x 10jobshop977977easyCPO in < 1 min
la2620 x 10jobshop12181218easyCPO in < 1 min
la2720 x 10jobshop12351235easyOptalCP in < 1 min
la2820 x 10jobshop12161216easyCPO in < 1 min
la2920 x 10jobshop11521152mediumOptalCP in 5 min
la3020 x 10jobshop13551355easyCPO in < 1 min
la3130 x 10jobshop17841784easyCPO in < 1 min
la3230 x 10jobshop18501850easyCPO in < 1 min
la3330 x 10jobshop17191719easyCPO in < 1 min
la3430 x 10jobshop17211721easyCPO in < 1 min
la3530 x 10jobshop18881888easyCPO in < 1 min
la3615 x 15jobshop12681268easyCPO in < 1 min
la3715 x 15jobshop13971397easyCPO in < 1 min
la3815 x 15jobshop11961196easyOptalCP in < 1 min
la3915 x 15jobshop12331233easyCPO in < 1 min
la4015 x 15jobshop12221222easyOptalCP in < 1 min

Adams, Balas and Zawack (1988)

InstanceSizeProblemLBUBTypeSolved by
abz510 x 10jobshop12341234easyCPO in < 1 min
abz610 x 10jobshop943943easyCPO in < 1 min
abz720 x 15jobshop656656mediumOptalCP in < 1h
abz820 x 15jobshop667667hardOptalCP in 10h
abz920 x 15jobshop678678mediumOptalCP in < 1h

Various places report that “Henning A (2002). Praktische Job-Shop Scheduling-Probleme. Ph.D. thesis, Friedrich-Schiller-Universität Jena, Jena, Germany” as having found a solution of 665 for abz8, but the original document says their solution is 667 and 665 is a “solution from the literature”. We believe it is just a typing mistake in the sources they used. In any case OptalCP proves a lower bound of 667.

Applegate and Cook (1991)

InstanceSizeProblemLBUBTypeSolved by
orb0110 x 10jobshop10591059easyCPO in < 1 min
orb0210 x 10jobshop888888easyCPO in < 1 min
orb0310 x 10jobshop10051005easyCPO in < 1 min
orb0410 x 10jobshop10051005easyCPO in < 1 min
orb0510 x 10jobshop887887easyCPO in < 1 min
orb0610 x 10jobshop10101010easyCPO in < 1 min
orb0710 x 10jobshop397397easyCPO in < 1 min
orb0810 x 10jobshop899899easyCPO in < 1 min
orb0910 x 10jobshop934934easyCPO in < 1 min
orb1010 x 10jobshop944944easyCPO in < 1 min

Storer, Wu and Vaccari (1992)

InstanceSizeProblemLBUBTypeSolved by
swv0120 x 10jobshop14071407easyOptalCP in < 1 min
swv0220 x 10jobshop14751475easyOptalCP in < 1 min
swv0320 x 10jobshop13981398mediumCPO in < 1h
swv0420 x 10jobshop14641464mediumOptalCP in < 1h
swv0520 x 10jobshop14241424mediumOptalCP in < 1h
swv0620 x 15jobshop16671667hardOptalCP in 40h
swv0720 x 15jobshop15411594openlb OptalCP / ub GR2014
swv0820 x 15jobshop16941751openlb OptalCP / ub Mu2015
swv0920 x 15jobshop16551655hardOptalCP in 15h
swv1020 x 15jobshop16921743openlb OptalCP / ub SS2018
swv1150 x 10jobshop29832983mediumOptalCP in < 1h
swv1250 x 10jobshop29722972mediumOptalCP in < 1h
swv1350 x 10jobshop31043104mediumOptalCP in < 1h
swv1450 x 10jobshop29682968mediumCPO in < 1h
swv1550 x 10jobshop28852885hardOptalCP in 9h
swv1650 x 10jobshop29242924easyCPO in < 1 min
swv1750 x 10jobshop27942794easyCPO in < 1 min
swv1850 x 10jobshop28522852easyCPO in < 1 min
swv1950 x 10jobshop28432843easyCPO in < 1 min
swv2050 x 10jobshop28232823easyCPO in < 1 min

Yamada Nakano (1992)

InstanceSizeProblemLBUBTypeSolved by
yn120 x 20jobshop884884hardOptalCP in 6h
yn220 x 20jobshop904904hardOptalCP in 40h
yn320 x 20jobshop892892hardOptalCP in 40h
yn420 x 20jobshop967967hardOptalCP in 16h

Taillard (1993)

InstanceSizeProblemLBUBTypeSolved by
ta01js15 x 15jobshop12311231easyCPO in < 1 min
ta02js15 x 15jobshop12441244easyOptalCP in < 1 min
ta03js15 x 15jobshop12181218easyOptalCP in < 1 min
ta04js15 x 15jobshop11751175easyOptalCP in < 1 min
ta05js15 x 15jobshop12241224easyOptalCP in < 1 min
ta06js15 x 15jobshop12381238easyOptalCP in < 1 min
ta07js15 x 15jobshop12271227easyOptalCP in < 1 min
ta08js15 x 15jobshop12171217easyOptalCP in < 1 min
ta09js15 x 15jobshop12741274easyOptalCP in < 1 min
ta10js15 x 15jobshop12411241easyOptalCP in < 1 min
ta11js20 x 15jobshop13571357mediumOptalCP in < 1h
ta12js20 x 15jobshop13671367mediumOptalCP in < 1h
ta13js20 x 15jobshop13421342mediumOptalCP in < 1h
ta14js20 x 15jobshop13451345easyCPO in < 1 min
ta15js20 x 15jobshop13391339mediumOptalCP in < 1h
ta16js20 x 15jobshop13601360mediumOptalCP in < 1h
ta17js20 x 15jobshop14621462easyOptalCP in < 1 min
ta18js20 x 15jobshop13961396mediumOptalCP in < 1h
ta19js20 x 15jobshop13321332mediumOptalCP in < 1h
ta20js20 x 15jobshop13481348mediumOptalCP in < 1h
ta21js20 x 20jobshop16421642mediumOptalCP < 1h
ta22js20 x 20jobshop16001600hardOptalCP in 2h
ta23js20 x 20jobshop15571557hardOptalCP in 2h
ta24js20 x 20jobshop16441644mediumOptalCP in < 1h
ta25js20 x 20jobshop15951595mediumOptalCP in < 1h
ta26js20 x 20jobshop16431643mediumOptalCP in 7h
ta27js20 x 20jobshop16801680mediumOptalCP in < 1h
ta28js20 x 20jobshop16031603mediumOptalCP in < 1h
ta29js20 x 20jobshop16251625hardOptalCP in 2h
ta30js20 x 20jobshop15621584openlb OptalCP / ub NS2002
ta31js30 x 15jobshop17641764mediumCPO in < 1h
ta32js30 x 15jobshop17741784openlb CPO2015 / ub PSV2010
ta33js30 x 15jobshop17911791hardOptalCP in 10h
ta34js30 x 15jobshop18281828mediumOptalCP in < 1h
ta35js30 x 15jobshop20072007easyOptalCP in < 1 min
ta36js30 x 15jobshop18191819mediumOptalCP in < 1h
ta37js30 x 15jobshop17711771hardOptalCP in 2h
ta38js30 x 15jobshop16731673hardOptalCP in 7h
ta39js30 x 15jobshop17951795easyOptalCP in < 1 min
ta40js30 x 15jobshop16581669openlb OptalCP / ub GR2014
ta41js30 x 20jobshop19262005openlb OptalCP / ub CPO2015
ta42js30 x 20jobshop19001937openlb OptalCP / ub GR2014
ta43js30 x 20jobshop18091846openlb CPO2015 / ub PLC2015
ta44js30 x 20jobshop19611979openlb OptalCP / ub CS2022
ta45js30 x 20jobshop19971997mediumOptalCP in < 1h
ta46js30 x 20jobshop19762004openlb OptalCP / ub GR2014
ta47js30 x 20jobshop18271889openlb OptalCP / ub PLC2015
ta48js30 x 20jobshop19211937openlb OptalCP / ub SS2018
ta49js30 x 20jobshop19381960openlb OptalCP / ub LHW2024
ta50js30 x 20jobshop18481923openlb OptalCP / ub PLC2015
ta51js50 x 15jobshop27602760easyCPO in < 1 min
ta52js50 x 15jobshop27562756easyOptalCP in < 1 min
ta53js50 x 15jobshop27172717easyOptalCP in < 1 min
ta54js50 x 15jobshop28392839easyCPO in < 1 min
ta55js50 x 15jobshop26792679easyOptalCP in < 1 min
ta56js50 x 15jobshop27812781easyOptalCP in < 1 min
ta57js50 x 15jobshop29432943easyCPO in < 1 min
ta58js50 x 15jobshop28852885easyCPO in < 1 min
ta59js50 x 15jobshop26552655easyOptalCP in < 1 min
ta60js50 x 15jobshop27232723easyOptalCP in < 1 min
ta61js50 x 20jobshop28682868easyOptalCP in < 1 min
ta62js50 x 20jobshop28692869mediumOptalCP in < 1h
ta63js50 x 20jobshop27552755easyOptalCP in < 1 min
ta64js50 x 20jobshop27022702easyOptalCP in < 1 min
ta65js50 x 20jobshop27252725easyOptalCP in < 1 min
ta66js50 x 20jobshop28452845easyOptalCP in < 1 min
ta67js50 x 20jobshop28252825hardOptalCP in 4h
ta68js50 x 20jobshop27842784easyOptalCP in < 1 min
ta69js50 x 20jobshop30713071easyOptalCP in < 1 min
ta70js50 x 20jobshop29952995mediumCPO in < 1h
ta71js100 x 20jobshop54645464easyOptalCP in < 1 min
ta72js100 x 20jobshop51815181easyOptalCP in < 1 min
ta73js100 x 20jobshop55685568easyOptalCP in < 1 min
ta74js100 x 20jobshop53395339easyOptalCP in < 1 min
ta75js100 x 20jobshop53925392mediumCPO in < 1h
ta76js100 x 20jobshop53425342easyOptalCP in < 1 min
ta77js100 x 20jobshop54365436easyOptalCP in < 1 min
ta78js100 x 20jobshop53945394easyOptalCP in < 1 min
ta79js100 x 20jobshop53585358easyOptalCP in < 1 min
ta80js100 x 20jobshop51835183easyOptalCP in < 1 min

Demikol, Mehta and Uzsoy (1998)

InstanceSizeProblemLBUBTypeSolved by
dmu0120 x 15jobshop25632563mediumOptalCP in < 1h
dmu0220 x 15jobshop27062706mediumOptalCP in < 1h
dmu0320 x 15jobshop27312731mediumCPO in < 1h
dmu0420 x 15jobshop26692669mediumOptalCP in < 1h
dmu0520 x 15jobshop27492749mediumOptalCP in < 1h
dmu0620 x 20jobshop32443244hardOptalCP in 2h
dmu0720 x 20jobshop30463046hardOptalCP in 3h
dmu0820 x 20jobshop31883188mediumOptalCP in < 1h
dmu0920 x 20jobshop30923092mediumOptalCP in < 1h
dmu1020 x 20jobshop29842984mediumOptalCP in < 1h
dmu1130 x 15jobshop34023430openlb OptalCP / ub PLC2015
dmu1230 x 15jobshop34813492openlb OptalCP / ub SS2018
dmu1330 x 15jobshop36813681hardOptalCP in 3h
dmu1430 x 15jobshop33943394easyOptalCP in < 1 min
dmu1530 x 15jobshop33433343easyOptalCP in < 1 min
dmu1630 x 20jobshop37343750openlb CPO2015 / ub LHW2024
dmu1730 x 20jobshop37333812openlb OptalCP / ub LHW2024
dmu1830 x 20jobshop38443844hardOptalCP in 10h
dmu1930 x 20jobshop37073764openlb OptalCP / ub CS2022
dmu2030 x 20jobshop36323699openlb OptalCP / ub LHW2024
dmu2140 x 15jobshop43804380easyOptalCP in < 1 min
dmu2240 x 15jobshop47254725easyCPO in < 1 min
dmu2340 x 15jobshop46684668easyCPO in < 1 min
dmu2440 x 15jobshop46484648easyCPO in < 1 min
dmu2540 x 15jobshop41644164easyCPO in < 1 min
dmu2640 x 20jobshop46474647mediumOptalCP < 1h
dmu2740 x 20jobshop48484848mediumOptalCP in < 1h
dmu2840 x 20jobshop46924692easyOptalCP in < 1 min
dmu2940 x 20jobshop46914691easyOptalCP in < 1 min
dmu3040 x 20jobshop47324732mediumOptalCP < 1h
dmu3150 x 15jobshop56405640easyCPO in < 1 min
dmu3250 x 15jobshop59275927easyCPO in < 1 min
dmu3350 x 15jobshop57285728easyCPO in < 1 min
dmu3450 x 15jobshop53855385easyCPO in < 1 min
dmu3550 x 15jobshop56355635easyCPO in < 1 min
dmu3650 x 20jobshop56215621easyOptalCP in < 1 min
dmu3750 x 20jobshop58515851mediumCPO in < 1h
dmu3850 x 20jobshop57135713mediumOptalCP in < 1h
dmu3950 x 20jobshop57475747easyOptalCP in < 1 min
dmu4050 x 20jobshop55775577easyOptalCP in < 1 min
dmu4120 x 15jobshop31763248openlb OptalCP / ub PLC2015
dmu4220 x 15jobshop33393390openlb OptalCP / ub SS2018
dmu4320 x 15jobshop34413441hardOptalCP in 8h
dmu4420 x 15jobshop34143475openlb OptalCP / ub SS2018
dmu4520 x 15jobshop32173266openlb OptalCP / ub CS2022
dmu4620 x 20jobshop37804035openlb OptalCP / ub GR2014
dmu4720 x 20jobshop37143939openlb OptalCP / ub GR2014
dmu4820 x 20jobshop36283763openlb OptalCP / ub SS2018
dmu4920 x 20jobshop35433706openlb OptalCP / ub LHW2024
dmu5020 x 20jobshop36183729openlb OptalCP / ub PLC2015
dmu5130 x 15jobshop40704156openlb OptalCP / ub SS2018
dmu5230 x 15jobshop42034297openlb OptalCP / ub LHW2024
dmu5330 x 15jobshop42484378openlb OptalCP / ub CS2022
dmu5430 x 15jobshop42774361openlb OptalCP / ub CS2022
dmu5530 x 15jobshop41914258openlb OptalCP / ub LHW2024
dmu5630 x 20jobshop47554939openlb OptalCP / ub XLGG2022
dmu5730 x 20jobshop44624647openlb OptalCP / ub XLGG2022
dmu5830 x 20jobshop44844701openlb OptalCP / ub CS2022
dmu5930 x 20jobshop43664607openlb OptalCP / ub LHW2024
dmu6030 x 20jobshop44684721openlb OptalCP / ub CS2022
dmu6140 x 15jobshop50385169openlb OptalCP / ub LHW2024
dmu6240 x 15jobshop51765247openlb OptalCP / ub LHW2024
dmu6340 x 15jobshop52455312openlb OptalCP / ub LHW2024
dmu6440 x 15jobshop51555226openlb OptalCP / ub CS2022
dmu6540 x 15jobshop51225173openlb OptalCP / ub LHW2024
dmu6640 x 20jobshop55265701openlb OptalCP / ub CS2022
dmu6740 x 20jobshop56615779openlb OptalCP / ub SS2018
dmu6840 x 20jobshop55135763openlb OptalCP / ub CS2022
dmu6940 x 20jobshop55115688openlb OptalCP / ub CS2022
dmu7040 x 20jobshop56335868openlb OptalCP / ub CS2022
dmu7150 x 15jobshop61296207openlb OptalCP / ub CS2022
dmu7250 x 15jobshop64346463openlb CdGKGC2025 / ub SS2018
dmu7350 x 15jobshop61076136openlb OptalCP / ub CS2022
dmu7450 x 15jobshop61686196openlb OptalCP / ub SS2018
dmu7550 x 15jobshop61236189openlb OptalCP / ub SS2018
dmu7650 x 20jobshop64796718openlb OptalCP / ub CS2022
dmu7750 x 20jobshop65206747openlb OptalCP / ub CS2022
dmu7850 x 20jobshop66436755openlb OptalCP / ub CS2022
dmu7950 x 20jobshop67206910openlb OptalCP / ub CS2022
dmu8050 x 20jobshop64606634openlb OptalCP / ub CS2022

Da Col and Teppan (2022)

InstanceSizeProblemLBUBTypeSolved by
tai_j10_m10_110 x 10jobshop82198219easyOptalCP in < 1 min
tai_j10_m10_210 x 10jobshop74167416easyOptalCP in < 1 min
tai_j10_m10_310 x 10jobshop80948094easyOptalCP in < 1 min
tai_j10_m10_410 x 10jobshop86578657easyOptalCP in < 1 min
tai_j10_m10_510 x 10jobshop79367936easyOptalCP in < 1 min
tai_j10_m10_610 x 10jobshop85098509easyOptalCP in < 1 min
tai_j10_m10_710 x 10jobshop82998299easyOptalCP in < 1 min
tai_j10_m10_810 x 10jobshop77887788easyOptalCP in < 1 min
tai_j10_m10_910 x 10jobshop83008300easyOptalCP in < 1 min
tai_j10_m10_1010 x 10jobshop84818481easyOptalCP in < 1 min
tai_j10_m100_110 x 100jobshop5660956609easyOptalCP in < 1 min
tai_j10_m100_210 x 100jobshop5233052330easyOptalCP in < 1 min
tai_j10_m100_310 x 100jobshop5641256412easyOptalCP in < 1 min
tai_j10_m100_410 x 100jobshop5488954889easyOptalCP in < 1 min
tai_j10_m100_510 x 100jobshop5460354603easyOptalCP in < 1 min
tai_j10_m100_610 x 100jobshop5372353723easyOptalCP in < 1 min
tai_j10_m100_710 x 100jobshop5545655456easyOptalCP in < 1 min
tai_j10_m100_810 x 100jobshop5646656466easyOptalCP in < 1 min
tai_j10_m100_910 x 100jobshop5509655096easyOptalCP in < 1 min
tai_j10_m100_1010 x 100jobshop5666156661easyOptalCP in < 1 min
tai_j10_m1000_110 x 1000jobshop515370515370easyOptalCP in < 1 min
tai_j10_m1000_210 x 1000jobshop513525513525easyOptalCP in < 1 min
tai_j10_m1000_310 x 1000jobshop508161508161easyOptalCP in < 1 min
tai_j10_m1000_410 x 1000jobshop513814513814easyOptalCP in < 1 min
tai_j10_m1000_510 x 1000jobshop517020517020easyOptalCP in < 1 min
tai_j10_m1000_610 x 1000jobshop517777517777easyOptalCP in < 1 min
tai_j10_m1000_710 x 1000jobshop514921514921easyOptalCP in < 1 min
tai_j10_m1000_810 x 1000jobshop522277522277easyOptalCP in < 1 min
tai_j10_m1000_910 x 1000jobshop511213511213easyOptalCP in < 1 min
tai_j10_m1000_1010 x 1000jobshop509855509855easyOptalCP in < 1 min
tai_j100_m10_1100 x 10jobshop5495154951easyOptalCP in < 1 min
tai_j100_m10_2100 x 10jobshop5716057160easyOptalCP in < 1 min
tai_j100_m10_3100 x 10jobshop5416654166easyOptalCP in < 1 min
tai_j100_m10_4100 x 10jobshop5437154371easyOptalCP in < 1 min
tai_j100_m10_5100 x 10jobshop5614256142easyOptalCP in < 1 min
tai_j100_m10_6100 x 10jobshop5244752447easyOptalCP in < 1 min
tai_j100_m10_7100 x 10jobshop5405154051easyOptalCP in < 1 min
tai_j100_m10_8100 x 10jobshop5562455624easyOptalCP in < 1 min
tai_j100_m10_9100 x 10jobshop5421054210easyOptalCP in < 1 min
tai_j100_m10_10100 x 10jobshop5546455464easyOptalCP in < 1 min
tai_j100_m100_1100 x 100jobshop6284377127openlb OptalCP / ub OptalCP
tai_j100_m100_2100 x 100jobshop6281477322openlb OptalCP / ub OptalCP
tai_j100_m100_3100 x 100jobshop6153376910openlb OptalCP / ub OptalCP
tai_j100_m100_4100 x 100jobshop6474278604openlb OptalCP / ub OptalCP
tai_j100_m100_5100 x 100jobshop6176678023openlb OptalCP / ub OptalCP
tai_j100_m100_6100 x 100jobshop6136077895openlb OptalCP / ub OptalCP
tai_j100_m100_7100 x 100jobshop6404077670openlb OptalCP / ub OptalCP
tai_j100_m100_8100 x 100jobshop6322478031openlb OptalCP / ub OptalCP
tai_j100_m100_9100 x 100jobshop6263179419openlb OptalCP / ub OptalCP
tai_j100_m100_10100 x 100jobshop6486677837openlb OptalCP / ub OptalCP
tai_j100_m1000_1100 x 1000jobshop522298544732openlb OptalCP / ub OptalCP
tai_j100_m1000_2100 x 1000jobshop530375546598openlb OptalCP / ub OptalCP
tai_j100_m1000_3100 x 1000jobshop530560549372openlb OptalCP / ub OptalCP
tai_j100_m1000_4100 x 1000jobshop527101545138openlb OptalCP / ub OptalCP
tai_j100_m1000_5100 x 1000jobshop517728545535openlb OptalCP / ub OptalCP
tai_j100_m1000_6100 x 1000jobshop522907545730openlb OptalCP / ub OptalCP
tai_j100_m1000_7100 x 1000jobshop522537546899openlb OptalCP / ub OptalCP
tai_j100_m1000_8100 x 1000jobshop526428549337openlb OptalCP / ub OptalCP
tai_j100_m1000_9100 x 1000jobshop528097550693openlb OptalCP / ub OptalCP
tai_j100_m1000_10100 x 1000jobshop521766543797openlb OptalCP / ub OptalCP
tai_j1000_m10_11000 x 10jobshop515334515334easyOptalCP in < 1 min
tai_j1000_m10_21000 x 10jobshop509226509226easyOptalCP in < 1 min
tai_j1000_m10_31000 x 10jobshop517493517493easyOptalCP in < 1 min
tai_j1000_m10_41000 x 10jobshop519369519369easyOptalCP in < 1 min
tai_j1000_m10_51000 x 10jobshop513881513881easyOptalCP in < 1 min
tai_j1000_m10_61000 x 10jobshop511932511932easyOptalCP in < 1 min
tai_j1000_m10_71000 x 10jobshop523900523900easyOptalCP in < 1 min
tai_j1000_m10_81000 x 10jobshop513101513101easyOptalCP in < 1 min
tai_j1000_m10_91000 x 10jobshop508701508701easyOptalCP in < 1 min
tai_j1000_m10_101000 x 10jobshop521360521360easyOptalCP in < 1 min
tai_j1000_m100_11000 x 100jobshop525343539120openlb OptalCP / ub OptalCP
tai_j1000_m100_21000 x 100jobshop528088540895openlb OptalCP / ub OptalCP
tai_j1000_m100_31000 x 100jobshop522793534794openlb OptalCP / ub OptalCP
tai_j1000_m100_41000 x 100jobshop524271536317openlb OptalCP / ub OptalCP
tai_j1000_m100_51000 x 100jobshop531216532016openlb OptalCP / ub OptalCP
tai_j1000_m100_61000 x 100jobshop518763535189openlb OptalCP / ub OptalCP
tai_j1000_m100_71000 x 100jobshop527093535894openlb OptalCP / ub OptalCP
tai_j1000_m100_81000 x 100jobshop519524533985openlb OptalCP / ub OptalCP
tai_j1000_m100_91000 x 100jobshop520889539511openlb OptalCP / ub OptalCP
tai_j1000_m100_101000 x 100jobshop529112540884openlb OptalCP / ub OptalCP
tai_j1000_m1000_11000 x 1000jobshop549392877062openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_21000 x 1000jobshop549043877115openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_31000 x 1000jobshop552580878805openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_41000 x 1000jobshop547670876363openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_51000 x 1000jobshop545193877562openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_61000 x 1000jobshop547286876067openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_71000 x 1000jobshop545877875891openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_81000 x 1000jobshop549220876456openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_91000 x 1000jobshop543559875914openlb OptalCP / ub Hexaly2024
tai_j1000_m1000_101000 x 1000jobshop541530874820openlb OptalCP / ub Hexaly2024

DaCol and Teppan - reentrant jobshop (2022)

InstanceSizeProblemLBUBTypeSolved by
long-100-10000-1103 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
long-100-10000-2103 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
long-100-10000-3103 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-10000-11002 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-10000-21002 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-10000-31002 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
long-100-100000-1109 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
long-100-100000-2114 x 100reentrant jobshop600000600000mediumOptalCP in < 1h
long-100-100000-3109 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-100000-11002 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-100000-21002 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
long-1000-100000-31003 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
short-100-10000-12162 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
short-100-10000-22192 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
short-100-10000-32169 x 100reentrant jobshop600000600000easyOptalCP in < 1 min
short-1000-10000-12882 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
short-1000-10000-22863 x 1000reentrant jobshop600000600000easyOptalCP in < 1 min
short-1000-10000-32897 x 1000reentrant jobshop600000600000mediumOptalCP in < 1h
short-100-100000-120685 x 100reentrant jobshop600000600000mediumOptalCP in < 1h
short-100-100000-220870 x 100reentrant jobshop600000600000mediumOptalCP in < 1h
short-100-100000-320767 x 100reentrant jobshop600000600000mediumOptalCP in < 1h
short-1000-100000-121280 x 1000reentrant jobshop600000600038openlb OptalCP / ub OptalCP
short-1000-100000-221349 x 1000reentrant jobshop600000600000mediumOptalCP in < 1h
short-1000-100000-321338 x 1000reentrant jobshop600000600000mediumOptalCP in < 1h

DaCol and Tepan report instance short-1000-100000-1 was solved to optimality by CP Optimizer in 6h which we haven’t been able to reproduce (with CPO any other solver). We are still investigating

Publications (best known solutions)

The upper and lower bounds come from

  • NS2002 (1 bound - ta30js) : Nowicki, E., & Smutnicki, C. (2002). Some new tools to solve the job shop problem. Raport serii: Preprinty, 60.

  • PSV2010 (1 bound - ta32js) : Pardalos, P. M., Shylo, O. V., & Vazacopoulos, A. (2010). Solving job shop scheduling problems utilizing the properties of backbone and “big valley”. Computational Optimization and Applications, 47, 61-76.

  • GR2014 (6 bounds in dmu, tajs and swv) : Gonçalves, J. F., & Resende, M. G. (2014). An extended Akers graphical method with a biased random‐key genetic algorithm for job‐shop scheduling. International Transactions in Operational Research, 21(2), 215-246.

  • CPO2015 (4 bounds in dmu and tajs):

  • Mu2015 (1 bound - swv08) : Personal communication to optimizizer, probably based on Murovec, B. (2015). Job-shop local-search move evaluation without direct consideration of the criterion’s value. European Journal of Operational Research, 241(2), 320-329.

  • PLC2015 (6 bounds in dmu and tajs) : Peng, B., Lü, Z., & Cheng, T. C. E. (2015). A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research, 53, 154-164.

  • SS2018 (11 bounds in dmu and swv) : Shylo, O. V., & Shams, H. (2018). Boosting binary optimization via binary classification: A case study of job shop scheduling

  • CS2022 (19 bounds in dmu and tajs) : Constantino, O. H., & Segura, C. (2022). A parallel memetic algorithm with explicit management of diversity for the job shop scheduling problem. Applied Intelligence, 52(1), 141-153.

  • XLGG2022 (2 bounds in dmu) : Xie, J., Li, X., Gao, L., & Gui, L. (2022). A hybrid algorithm with a new neighborhood structure for job shop scheduling problems. Computers & Industrial Engineering, 169, 108205.

  • Hexaly2024 (10 bounds - tai) : Lea Blaise (2014) https://www.hexaly.com/benchmarks/hexaly-vs-cp-optimizer-vs-CP-SAT-on-the-job-shop-scheduling-problem-jssp

  • LHW2024 (12 bounds - dmu, tajs) : Mingjie Li, Jin-Kao Hao & Qinghua Wu (2025). Combining Hash-based Tabu Search and Frequent Pattern Mining for Job-Shop Scheduling. IISE Transactions, 1–16.

  • CdGKGC2025 (1 bound dmu72) : Marc-Emmanuel Coupvent des Graviers, Lotfi Kobrosly, Christophe Guettier, and Tristan Cazenave (2025). Updating Lower and Upper Bounds for the Job-Shop Scheduling Problem Test Instances CoRR abs/2504.16106

All other bounds were found by OptalCP

Test instances

Reference tests

We provide these tests as a reference, you should get something similar on your hardware (multi-core engines are inherently non-deterministic hence each run returns slightly different results) or find an explanation of why the engines don’t behave as expected. We strongly encourage you to run all engines you want to compare against on your own hardware.

LA instances

On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds

  • OptalCP Academic Version 2025.6.1 with 2 FDS, 1 FDSLB, 1 LNS (3 provers, 1 searcher)
  • CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
Instance OptalCP CP-SAT
la01 666 in 0s 666 in 0s
la02 655 in 0s 655 in 0s
la03 597 in 0s 597 in 0s
la04 590 in 0s 590 in 0s
la05 593 in 0s 593 in 0s
la06 926 in 0s 926 in 0s
la07 890 in 0s 890 in 0s
la08 863 in 0s 863 in 0s
la09 951 in 0s 951 in 0s
la10 958 in 0s 958 in 0s
la11 1222 in 0s 1222 in 0s
la12 1039 in 0s 1039 in 0s
la13 1150 in 0s 1150 in 0s
la14 1292 in 0s 1292 in 0s
la15 1207 in 0s 1207 in 0s
la16 945 in 0s 945 in 0s
la17 784 in 0s 784 in 0s
la18 848 in 0s 848 in 0s
la19 842 in 0s 842 in 1s
la20 902 in 0s 902 in 0s
la21 1046 in 2s 1046 in 49s
la22 927 in 0s 927 in 3s
la23 1032 in 0s 1032 in 0s
la24 935 in 1s 935 in 12s
la25 977 in 1s 977 in 11s
la26 1218 in 0s 1218 in 2s
la27 1235 in 9s 1235 in 9s
la28 1216 in 0s 1216 in 3s
la29 1152 in 217s 1130 .. 1162 in 600s
la30 1355 in 0s 1355 in 1s
la31 1784 in 0s 1784 in 1s
la32 1850 in 0s 1850 in 0s
la33 1719 in 0s 1719 in 1s
la34 1721 in 0s 1721 in 1s
la35 1888 in 0s 1888 in 0s
la36 1268 in 0s 1268 in 6s
la37 1397 in 0s 1397 in 1s
la38 1196 in 9s 1196 in 148s
la39 1233 in 0s 1233 in 2s
la40 1222 in 2s 1222 in 23s

TA instances

On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds

  • OptalCP Academic Version 2025.6.1 with 2 FDS, 1 FDSLB, 1 LNS (3 provers, 1 searcher)
  • CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
Instance OptalCP CP-SAT
ta01js 1231 in 0s 1231 in 6s
ta02js 1244 in 2s 1244 in 44s
ta03js 1218 in 2s 1218 in 19s
ta04js 1175 in 2s 1175 in 53s
ta05js 1224 in 12s 1224 in 352s
ta06js 1238 in 163s 1203 .. 1238 in 600s
ta07js 1227 in 14s 1227 in 200s
ta08js 1217 in 8s 1217 in 130s
ta09js 1274 in 7s 1274 in 84s
ta10js 1241 in 2s 1241 in 20s
ta11js 1326 .. 1365 in 600s 1310 .. 1373 in 600s
ta12js 1367 in 231s 1352 .. 1387 in 600s
ta13js 1325 .. 1342 in 600s 1279 .. 1348 in 600s
ta14js 1345 in 0s 1345 in 9s
ta15js 1331 .. 1339 in 600s 1304 .. 1351 in 600s
ta16js 1343 .. 1363 in 600s 1300 .. 1370 in 600s
ta17js 1462 in 3s 1462 in 88s
ta18js 1389 .. 1398 in 600s 1361 .. 1414 in 600s
ta19js 1327 .. 1343 in 600s 1299 .. 1368 in 600s
ta20js 1338 .. 1351 in 600s 1316 .. 1363 in 600s
ta21js 1625 .. 1653 in 600s 1583 .. 1655 in 600s
ta22js 1544 .. 1616 in 600s 1533 .. 1613 in 600s
ta23js 1513 .. 1564 in 600s 1496 .. 1586 in 600s
ta24js 1644 in 282s 1613 .. 1653 in 600s
ta25js 1543 .. 1608 in 600s 1531 .. 1619 in 600s
ta26js 1577 .. 1659 in 600s 1562 .. 1673 in 600s
ta27js 1639 .. 1691 in 600s 1627 .. 1702 in 600s
ta28js 1603 in 183s 1588 .. 1609 in 600s
ta29js 1553 .. 1635 in 600s 1537 .. 1644 in 600s
ta30js 1513 .. 1605 in 600s 1488 .. 1612 in 600s
ta31js 1764 .. 1766 in 600s 1764 .. 1768 in 600s
ta32js 1774 .. 1817 in 600s 1774 .. 1830 in 600s
ta33js 1774 .. 1824 in 600s 1783 .. 1857 in 600s
ta34js 1828 .. 1849 in 600s 1828 .. 1846 in 600s
ta35js 2007 in 2s 2007 in 11s
ta36js 1819 .. 1826 in 600s 1819 in 413s
ta37js 1771 .. 1796 in 600s 1771 .. 1812 in 600s
ta38js 1673 .. 1688 in 600s 1673 .. 1732 in 600s
ta39js 1795 in 51s 1795 in 506s
ta40js 1632 .. 1709 in 600s 1643 .. 1745 in 600s
ta41js 1858 .. 2073 in 600s 1890 .. 2100 in 600s
ta42js 1867 .. 1969 in 600s 1875 .. 1985 in 600s
ta43js 1809 .. 1890 in 600s 1809 .. 1941 in 600s
ta44js 1923 .. 2022 in 600s 1938 .. 2083 in 600s
ta45js 1991 .. 2016 in 600s 1997 .. 2042 in 600s
ta46js 1940 .. 2060 in 600s 1945 .. 2057 in 600s
ta47js 1782 .. 1936 in 600s 1800 .. 1986 in 600s
ta48js 1905 .. 1983 in 600s 1912 .. 2022 in 600s
ta49js 1903 .. 2016 in 600s 1927 .. 2051 in 600s
ta50js 1806 .. 1982 in 600s 1821 .. 2003 in 600s
ta51js 2760 in 6s 2760 in 329s
ta52js 2756 in 6s 2756 in 401s
ta53js 2717 in 2s 2717 in 104s
ta54js 2839 in 2s 2839 in 29s
ta55js 2679 in 10s 2679 .. 2693 in 600s
ta56js 2781 in 4s 2781 in 105s
ta57js 2943 in 2s 2943 in 60s
ta58js 2885 in 2s 2885 in 157s
ta59js 2655 in 7s 2655 .. 2682 in 600s
ta60js 2723 in 5s 2723 in 562s
ta61js 2868 in 8s 2868 .. 2916 in 600s
ta62js 2869 .. 2877 in 600s 2869 .. 3008 in 600s
ta63js 2755 in 45s 2755 .. 2825 in 600s
ta64js 2702 in 12s 2702 .. 2756 in 600s
ta65js 2725 in 30s 2725 .. 2842 in 600s
ta66js 2845 in 16s 2845 .. 2916 in 600s
ta67js 2825 .. 2826 in 600s 2825 .. 2869 in 600s
ta68js 2784 in 6s 2784 .. 2822 in 600s
ta69js 3071 in 7s 3071 in 286s
ta70js 2995 in 28s 2995 .. 3109 in 600s
ta71js 5464 in 17s 5464 .. 5648 in 600s
ta72js 5181 in 15s 5181 .. 5310 in 600s
ta73js 5568 in 17s 5568 .. 5648 in 600s
ta74js 5339 in 13s 5339 .. 5367 in 600s
ta75js 5392 in 31s 5392 .. 5693 in 600s
ta76js 5342 in 19s 5342 .. 5475 in 600s
ta77js 5436 in 11s 5436 .. 5488 in 600s
ta78js 5394 in 15s 5394 .. 5522 in 600s
ta79js 5358 in 21s 5358 .. 5463 in 600s
ta80js 5183 in 15s 5183 .. 5304 in 600s

YN instances

On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds

  • OptalCP Demo Version 2025.7.0 with 1 FDS, 1 FDSLB, 2 LNS (2 provers, 2 searchers)
  • CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
Instance OptalCP CP-SAT
yn1 860 .. 884 in 600s 837 .. 889 in 600s
yn2 871 .. 914 in 600s 858 .. 917 in 600s
yn3 853 .. 903 in 600s 842 .. 918 in 600s
yn4 932 .. 977 in 600s 910 .. 985 in 600s

TAI 100 x 100 instances

On an Windows PC with an i7 4-core 3.3GHz 32GB ram in 600 seconds

  • OptalCP Academic Version 2025.8.0 with 1 FDS, 3 LNS (1 prover, 3 searchers)
  • CP-SAT V9.14.6206 with default configuration (its log reports running 8 workers)
Instance OptalCP CP-SAT
tai_j100_m100_1 62521 .. 79694 in 600s 62303 .. 89932 in 601s
tai_j100_m100_2 62741 .. 79265 in 600s 62032 .. 89636 in 601s
tai_j100_m100_3 61197 .. 78375 in 600s 60201 .. 89282 in 601s
tai_j100_m100_4 64449 .. 80653 in 600s 60980 .. 92178 in 601s
tai_j100_m100_5 61340 .. 79746 in 600s 61165 .. 90602 in 601s
tai_j100_m100_6 60932 .. 79567 in 600s 59272 .. 92399 in 601s
tai_j100_m100_7 63641 .. 78857 in 600s 62755 .. 90905 in 601s
tai_j100_m100_8 62989 .. 79131 in 600s 61238 .. 90028 in 601s
tai_j100_m100_9 62379 .. 80599 in 600s 60619 .. 92256 in 601s
tai_j100_m100_10 64866 .. 79005 in 600s 61008 .. 90217 in 601s